27,856 research outputs found

    An interleaved sampling scheme for the characterization of single qubit dynamics

    Full text link
    In this paper, we demonstrate that interleaved sampling techniques can be used to characterize the Hamiltonian of a qubit and its environmental decoherence rate. The technique offers a significant advantage in terms of the number of measurements that are required to characterize a qubit. When compared to the standard Nyquist-Shannon sampling rate, the saving in the total measurement time for the interleaved method is approximately proportional to the ratio of the sample rates.Comment: 9 pages, 4 figure

    Time interleaved optical sampling for ultra-high speed A/D conversion

    Get PDF
    A scheme is proposed for increasing the sampling rate of analogue-to-digital conversion by more than an order of magnitude by combining state-of-the-art A/D converters with photonic technology. Ultra-high speed sampling is performed optically by a multiwavelength pulse train. Wavelength demultiplexers convert the high repetition rate data stream of samples into parallel data streams that can be handled by available electronic A/D converters

    Approximating Local Homology from Samples

    Full text link
    Recently, multi-scale notions of local homology (a variant of persistent homology) have been used to study the local structure of spaces around a given point from a point cloud sample. Current reconstruction guarantees rely on constructing embedded complexes which become difficult in high dimensions. We show that the persistence diagrams used for estimating local homology, can be approximated using families of Vietoris-Rips complexes, whose simple constructions are robust in any dimension. To the best of our knowledge, our results, for the first time, make applications based on local homology, such as stratification learning, feasible in high dimensions.Comment: 23 pages, 14 figure

    Multiple description video coding based on zero padding

    Get PDF

    Empirical Comparison of Chirp and Multitones on Experimental UWB Software Defined Radar Prototype

    Get PDF
    This paper proposes and tests an approach for an unbiased study of radar waveforms' performances. Using the ultrawide band software defined radar prototype, the performances of Chirp and Multitones are compared in range profile and detection range. The architecture was implemented and has performances comparable to the state of the art in software defined radar prototypes. The experimental results are consistent with the simulations

    Sensitive and Scalable Online Evaluation with Theoretical Guarantees

    Full text link
    Multileaved comparison methods generalize interleaved comparison methods to provide a scalable approach for comparing ranking systems based on regular user interactions. Such methods enable the increasingly rapid research and development of search engines. However, existing multileaved comparison methods that provide reliable outcomes do so by degrading the user experience during evaluation. Conversely, current multileaved comparison methods that maintain the user experience cannot guarantee correctness. Our contribution is two-fold. First, we propose a theoretical framework for systematically comparing multileaved comparison methods using the notions of considerateness, which concerns maintaining the user experience, and fidelity, which concerns reliable correct outcomes. Second, we introduce a novel multileaved comparison method, Pairwise Preference Multileaving (PPM), that performs comparisons based on document-pair preferences, and prove that it is considerate and has fidelity. We show empirically that, compared to previous multileaved comparison methods, PPM is more sensitive to user preferences and scalable with the number of rankers being compared.Comment: CIKM 2017, Proceedings of the 2017 ACM on Conference on Information and Knowledge Managemen

    Performance of a Tungsten-Cerium Fluoride Sampling Calorimeter in High-Energy Electron Beam Tests

    Full text link
    A prototype for a sampling calorimeter made out of cerium fluoride crystals interleaved with tungsten plates, and read out by wavelength-shifting fibres, has been exposed to beams of electrons with energies between 20 and 150 GeV, produced by the CERN Super Proton Synchrotron accelerator complex. The performance of the prototype is presented and compared to that of a Geant4 simulation of the apparatus. Particular emphasis is given to the response uniformity across the channel front face, and to the prototype's energy resolution.Comment: 6 pages, 6 figures, Submitted to NIM

    Approximate BER for OFDM systems impaired by a gain mismatch of a TI-ADC realization

    Get PDF
    • 

    corecore