1,510 research outputs found

    Interleaved Group Convolutions for Deep Neural Networks

    Full text link
    In this paper, we present a simple and modularized neural network architecture, named interleaved group convolutional neural networks (IGCNets). The main point lies in a novel building block, a pair of two successive interleaved group convolutions: primary group convolution and secondary group convolution. The two group convolutions are complementary: (i) the convolution on each partition in primary group convolution is a spatial convolution, while on each partition in secondary group convolution, the convolution is a point-wise convolution; (ii) the channels in the same secondary partition come from different primary partitions. We discuss one representative advantage: Wider than a regular convolution with the number of parameters and the computation complexity preserved. We also show that regular convolutions, group convolution with summation fusion, and the Xception block are special cases of interleaved group convolutions. Empirical results over standard benchmarks, CIFAR-1010, CIFAR-100100, SVHN and ImageNet demonstrate that our networks are more efficient in using parameters and computation complexity with similar or higher accuracy.Comment: To appear in ICCV 201

    IGCV22: Interleaved Structured Sparse Convolutional Neural Networks

    Full text link
    In this paper, we study the problem of designing efficient convolutional neural network architectures with the interest in eliminating the redundancy in convolution kernels. In addition to structured sparse kernels, low-rank kernels and the product of low-rank kernels, the product of structured sparse kernels, which is a framework for interpreting the recently-developed interleaved group convolutions (IGC) and its variants (e.g., Xception), has been attracting increasing interests. Motivated by the observation that the convolutions contained in a group convolution in IGC can be further decomposed in the same manner, we present a modularized building block, {IGCV22:} interleaved structured sparse convolutions. It generalizes interleaved group convolutions, which is composed of two structured sparse kernels, to the product of more structured sparse kernels, further eliminating the redundancy. We present the complementary condition and the balance condition to guide the design of structured sparse kernels, obtaining a balance among three aspects: model size, computation complexity and classification accuracy. Experimental results demonstrate the advantage on the balance among these three aspects compared to interleaved group convolutions and Xception, and competitive performance compared to other state-of-the-art architecture design methods.Comment: Accepted by CVPR 201

    Selective Kernel Networks

    Full text link
    In standard Convolutional Neural Networks (CNNs), the receptive fields of artificial neurons in each layer are designed to share the same size. It is well-known in the neuroscience community that the receptive field size of visual cortical neurons are modulated by the stimulus, which has been rarely considered in constructing CNNs. We propose a dynamic selection mechanism in CNNs that allows each neuron to adaptively adjust its receptive field size based on multiple scales of input information. A building block called Selective Kernel (SK) unit is designed, in which multiple branches with different kernel sizes are fused using softmax attention that is guided by the information in these branches. Different attentions on these branches yield different sizes of the effective receptive fields of neurons in the fusion layer. Multiple SK units are stacked to a deep network termed Selective Kernel Networks (SKNets). On the ImageNet and CIFAR benchmarks, we empirically show that SKNet outperforms the existing state-of-the-art architectures with lower model complexity. Detailed analyses show that the neurons in SKNet can capture target objects with different scales, which verifies the capability of neurons for adaptively adjusting their receptive field sizes according to the input. The code and models are available at https://github.com/implus/SKNet.Comment: CVPR 201

    Seesaw-Net: Convolution Neural Network With Uneven Group Convolution

    Full text link
    In this paper, we are interested in boosting the representation capability of convolution neural networks which utilizing the inverted residual structure. Based on the success of Inverted Residual structure[Sandler et al. 2018] and Interleaved Low-Rank Group Convolutions[Sun et al. 2018], we rethink this two pattern of neural network structure, rather than NAS(Neural architecture search) method[Zoph and Le 2017; Pham et al. 2018; Liu et al. 2018b], we introduce uneven point-wise group convolution, which provide a novel search space for designing basic blocks to obtain better trade-off between representation capability and computational cost. Meanwhile, we propose two novel information flow patterns that will enable cross-group information flow for multiple group convolution layers with and without any channel permute/shuffle operation. Dense experiments on image classification task show that our proposed model, named Seesaw-Net, achieves state-of-the-art(SOTA) performance with limited computation and memory cost. Our code will be open-source and available together with pre-trained models

    Fully Learnable Group Convolution for Acceleration of Deep Neural Networks

    Full text link
    Benefitted from its great success on many tasks, deep learning is increasingly used on low-computational-cost devices, e.g. smartphone, embedded devices, etc. To reduce the high computational and memory cost, in this work, we propose a fully learnable group convolution module (FLGC for short) which is quite efficient and can be embedded into any deep neural networks for acceleration. Specifically, our proposed method automatically learns the group structure in the training stage in a fully end-to-end manner, leading to a better structure than the existing pre-defined, two-steps, or iterative strategies. Moreover, our method can be further combined with depthwise separable convolution, resulting in 5 times acceleration than the vanilla Resnet50 on single CPU. An additional advantage is that in our FLGC the number of groups can be set as any value, but not necessarily 2^k as in most existing methods, meaning better tradeoff between accuracy and speed. As evaluated in our experiments, our method achieves better performance than existing learnable group convolution and standard group convolution when using the same number of groups.Comment: Accepted by CVPR 201

    Machine Learning with Clos Networks

    Full text link
    We present a new methodology for improving the accuracy of small neural networks by applying the concept of a clos network to achieve maximum expression in a smaller network. We explore the design space to show that more layers is beneficial, given the same number of parameters. We also present findings on how the relu nonlinearity ffects accuracy in separable networks. We present results on early work with Cifar-10 dataset

    Looking Fast and Slow: Memory-Guided Mobile Video Object Detection

    Full text link
    With a single eye fixation lasting a fraction of a second, the human visual system is capable of forming a rich representation of a complex environment, reaching a holistic understanding which facilitates object recognition and detection. This phenomenon is known as recognizing the "gist" of the scene and is accomplished by relying on relevant prior knowledge. This paper addresses the analogous question of whether using memory in computer vision systems can not only improve the accuracy of object detection in video streams, but also reduce the computation time. By interleaving conventional feature extractors with extremely lightweight ones which only need to recognize the gist of the scene, we show that minimal computation is required to produce accurate detections when temporal memory is present. In addition, we show that the memory contains enough information for deploying reinforcement learning algorithms to learn an adaptive inference policy. Our model achieves state-of-the-art performance among mobile methods on the Imagenet VID 2015 dataset, while running at speeds of up to 70+ FPS on a Pixel 3 phone

    VarGNet: Variable Group Convolutional Neural Network for Efficient Embedded Computing

    Full text link
    In this paper, we propose a novel network design mechanism for efficient embedded computing. Inspired by the limited computing patterns, we propose to fix the number of channels in a group convolution, instead of the existing practice that fixing the total group numbers. Our solution based network, named Variable Group Convolutional Network (VarGNet), can be optimized easier on hardware side, due to the more unified computing schemes among the layers. Extensive experiments on various vision tasks, including classification, detection, pixel-wise parsing and face recognition, have demonstrated the practical value of our VarGNet.Comment: Technical repor

    Deep Scale-spaces: Equivariance Over Scale

    Full text link
    We introduce deep scale-spaces (DSS), a generalization of convolutional neural networks, exploiting the scale symmetry structure of conventional image recognition tasks. Put plainly, the class of an image is invariant to the scale at which it is viewed. We construct scale equivariant cross-correlations based on a principled extension of convolutions, grounded in the theory of scale-spaces and semigroups. As a very basic operation, these cross-correlations can be used in almost any modern deep learning architecture in a plug-and-play manner. We demonstrate our networks on the Patch Camelyon and Cityscapes datasets, to prove their utility and perform introspective studies to further understand their properties

    IGCV3: Interleaved Low-Rank Group Convolutions for Efficient Deep Neural Networks

    Full text link
    In this paper, we are interested in building lightweight and efficient convolutional neural networks. Inspired by the success of two design patterns, composition of structured sparse kernels, e.g., interleaved group convolutions (IGC), and composition of low-rank kernels, e.g., bottle-neck modules, we study the combination of such two design patterns, using the composition of structured sparse low-rank kernels, to form a convolutional kernel. Rather than introducing a complementary condition over channels, we introduce a loose complementary condition, which is formulated by imposing the complementary condition over super-channels, to guide the design for generating a dense convolutional kernel. The resulting network is called IGCV3. We empirically demonstrate that the combination of low-rank and sparse kernels boosts the performance and the superiority of our proposed approach to the state-of-the-arts, IGCV2 and MobileNetV2 over image classification on CIFAR and ImageNet and object detection on COCO.Comment: 10 pages, 2 figures, accepted by BMVC 201
    • …
    corecore