16,273 research outputs found

    On Polynomial-time Path-following Interior-point Methods with Local Superlinear Convergence

    Get PDF
    Interior-point methods provide one of the most popular ways of solving convex optimization problems. Two advantages of modern interior-point methods over other approaches are: (1) robust global convergence, and (2) the ability to obtain high accuracy solutions in theory (and in practice, if the algorithms are properly implemented, and as long as numerical linear system solvers continue to provide high accuracy solutions) for well-posed problem instances. This second ability is typically demonstrated by asymptotic superlinear convergence properties. In this thesis, we study superlinear convergence properties of interior-point methods with proven polynomial iteration complexity. Our focus is on linear programming and semidefinite programming special cases. We provide a survey on polynomial iteration complexity interior-point methods which also achieve asymptotic superlinear convergence. We analyze the elements of superlinear convergence proofs for a dual interior-point algorithm of Nesterov and Tun\c{c}el and a primal-dual interior-point algorithm of Mizuno, Todd and Ye. We present the results of our computational experiments which observe and track superlinear convergence for a variant of Nesterov and Tun\c{c}el's algorithm

    Projection methods in conic optimization

    Get PDF
    There exist efficient algorithms to project a point onto the intersection of a convex cone and an affine subspace. Those conic projections are in turn the work-horse of a range of algorithms in conic optimization, having a variety of applications in science, finance and engineering. This chapter reviews some of these algorithms, emphasizing the so-called regularization algorithms for linear conic optimization, and applications in polynomial optimization. This is a presentation of the material of several recent research articles; we aim here at clarifying the ideas, presenting them in a general framework, and pointing out important techniques

    Conic Optimization Theory: Convexification Techniques and Numerical Algorithms

    Full text link
    Optimization is at the core of control theory and appears in several areas of this field, such as optimal control, distributed control, system identification, robust control, state estimation, model predictive control and dynamic programming. The recent advances in various topics of modern optimization have also been revamping the area of machine learning. Motivated by the crucial role of optimization theory in the design, analysis, control and operation of real-world systems, this tutorial paper offers a detailed overview of some major advances in this area, namely conic optimization and its emerging applications. First, we discuss the importance of conic optimization in different areas. Then, we explain seminal results on the design of hierarchies of convex relaxations for a wide range of nonconvex problems. Finally, we study different numerical algorithms for large-scale conic optimization problems.Comment: 18 page
    • …
    corecore