7,777 research outputs found

    Worst-case convergence analysis of inexact gradient and Newton methods through semidefinite programming performance estimation

    Get PDF
    We provide new tools for worst-case performance analysis of the gradient (or steepest descent) method of Cauchy for smooth strongly convex functions, and Newton's method for self-concordant functions, including the case of inexact search directions. The analysis uses semidefinite programming performance estimation, as pioneered by Drori and Teboulle [Mathematical Programming, 145(1-2):451-482, 2014], and extends recent performance estimation results for the method of Cauchy by the authors [Optimization Letters, 11(7), 1185-1199, 2017]. To illustrate the applicability of the tools, we demonstrate a novel complexity analysis of short step interior point methods using inexact search directions. As an example in this framework, we sketch how to give a rigorous worst-case complexity analysis of a recent interior point method by Abernethy and Hazan [PMLR, 48:2520-2528, 2016].Comment: 22 pages, 1 figure. Title of earlier version was "Worst-case convergence analysis of gradient and Newton methods through semidefinite programming performance estimation

    Polynomial Primal-Dual Cone Affine Scaling for Semidefinite Programming

    Get PDF
    In this paper we generalize the primal--dual cone affine scaling algorithm of Sturm and Zhang to semidefinite programming. We show in this paper that the underlying ideas of the cone affine scaling algorithm can be naturely applied to semidefinite programming, resulting in a new algorithm. Compared to other primal--dual affine scaling algorithms for semidefinite programming, our algorithm enjoys the lowest computational complexity.semidefinite programming;affine scaling;primal--dual Interior point methods

    Self-scaled barriers for irreducible symmetric cones

    Full text link
    Self-scaled barrier functions are fundamental objects in the theory of interior-point methods for linear optimization over symmetric cones, of which linear and semidefinite programming are special cases. We are classifying all self-scaled barriers over irreducible symmetric cones and show that these functions are merely homothetic transformations of the universal barrier function. Together with a decomposition theorem for self-scaled barriers this concludes the algebraic classification theory of these functions. After introducing the reader to the concepts relevant to the problem and tracing the history of the subject, we start by deriving our result from first principles in the important special case of semidefinite programming. We then generalise these arguments to irreducible symmetric cones by invoking results from the theory of Euclidean Jordan algebras.Comment: 12 page

    Efficient Semidefinite Spectral Clustering via Lagrange Duality

    Full text link
    We propose an efficient approach to semidefinite spectral clustering (SSC), which addresses the Frobenius normalization with the positive semidefinite (p.s.d.) constraint for spectral clustering. Compared with the original Frobenius norm approximation based algorithm, the proposed algorithm can more accurately find the closest doubly stochastic approximation to the affinity matrix by considering the p.s.d. constraint. In this paper, SSC is formulated as a semidefinite programming (SDP) problem. In order to solve the high computational complexity of SDP, we present a dual algorithm based on the Lagrange dual formalization. Two versions of the proposed algorithm are proffered: one with less memory usage and the other with faster convergence rate. The proposed algorithm has much lower time complexity than that of the standard interior-point based SDP solvers. Experimental results on both UCI data sets and real-world image data sets demonstrate that 1) compared with the state-of-the-art spectral clustering methods, the proposed algorithm achieves better clustering performance; and 2) our algorithm is much more efficient and can solve larger-scale SSC problems than those standard interior-point SDP solvers.Comment: 13 page

    Worst-Case Linear Discriminant Analysis as Scalable Semidefinite Feasibility Problems

    Full text link
    In this paper, we propose an efficient semidefinite programming (SDP) approach to worst-case linear discriminant analysis (WLDA). Compared with the traditional LDA, WLDA considers the dimensionality reduction problem from the worst-case viewpoint, which is in general more robust for classification. However, the original problem of WLDA is non-convex and difficult to optimize. In this paper, we reformulate the optimization problem of WLDA into a sequence of semidefinite feasibility problems. To efficiently solve the semidefinite feasibility problems, we design a new scalable optimization method with quasi-Newton methods and eigen-decomposition being the core components. The proposed method is orders of magnitude faster than standard interior-point based SDP solvers. Experiments on a variety of classification problems demonstrate that our approach achieves better performance than standard LDA. Our method is also much faster and more scalable than standard interior-point SDP solvers based WLDA. The computational complexity for an SDP with mm constraints and matrices of size dd by dd is roughly reduced from O(m3+md3+m2d2)\mathcal{O}(m^3+md^3+m^2d^2) to O(d3)\mathcal{O}(d^3) (m>dm>d in our case).Comment: 14 page

    Sum of squares generalizations for conic sets

    Full text link
    In polynomial optimization problems, nonnegativity constraints are typically handled using the sum of squares condition. This can be efficiently enforced using semidefinite programming formulations, or as more recently proposed by Papp and Yildiz [18], using the sum of squares cone directly in a nonsymmetric interior point algorithm. Beyond nonnegativity, more complicated polynomial constraints (in particular, generalizations of the positive semidefinite, second order and 1\ell_1-norm cones) can also be modeled through structured sum of squares programs. We take a different approach and propose using more specialized polynomial cones instead. This can result in lower dimensional formulations, more efficient oracles for interior point methods, or self-concordant barriers with smaller parameters. In most cases, these algorithmic advantages also translate to faster solving times in practice
    corecore