76,828 research outputs found

    Advances in Interior Point Methods for Large-Scale Linear Programming

    Get PDF
    This research studies two computational techniques that improve the practical performance of existing implementations of interior point methods for linear programming. Both are based on the concept of symmetric neighbourhood as the driving tool for the analysis of the good performance of some practical algorithms. The symmetric neighbourhood adds explicit upper bounds on the complementarity pairs, besides the lower bound already present in the common N−1 neighbourhood. This allows the algorithm to keep under control the spread among complementarity pairs and reduce it with the barrier parameter μ. We show that a long-step feasible algorithm based on this neighbourhood is globally convergent and converges in O(nL) iterations. The use of the symmetric neighbourhood and the recent theoretical under- standing of the behaviour of Mehrotra’s corrector direction motivate the introduction of a weighting mechanism that can be applied to any corrector direction, whether originating from Mehrotra’s predictor–corrector algorithm or as part of the multiple centrality correctors technique. Such modification in the way a correction is applied aims to ensure that any computed search direction can positively contribute to a successful iteration by increasing the overall stepsize, thus avoid- ing the case that a corrector is rejected. The usefulness of the weighting strategy is documented through complete numerical experiments on various sets of publicly available test problems. The implementation within the hopdm interior point code shows remarkable time savings for large-scale linear programming problems. The second technique develops an efficient way of constructing a starting point for structured large-scale stochastic linear programs. We generate a computation- ally viable warm-start point by solving to low accuracy a stochastic problem of much smaller dimension. The reduced problem is the deterministic equivalent program corresponding to an event tree composed of a restricted number of scenarios. The solution to the reduced problem is then expanded to the size of the problem instance, and used to initialise the interior point algorithm. We present theoretical conditions that the warm-start iterate has to satisfy in order to be successful. We implemented this technique in both the hopdm and the oops frameworks, and its performance is verified through a series of tests on problem instances coming from various stochastic programming sources

    Updating constraint preconditioners for KKT systems in quadratic programming via low-rank corrections

    Get PDF
    This work focuses on the iterative solution of sequences of KKT linear systems arising in interior point methods applied to large convex quadratic programming problems. This task is the computational core of the interior point procedure and an efficient preconditioning strategy is crucial for the efficiency of the overall method. Constraint preconditioners are very effective in this context; nevertheless, their computation may be very expensive for large-scale problems, and resorting to approximations of them may be convenient. Here we propose a procedure for building inexact constraint preconditioners by updating a "seed" constraint preconditioner computed for a KKT matrix at a previous interior point iteration. These updates are obtained through low-rank corrections of the Schur complement of the (1,1) block of the seed preconditioner. The updated preconditioners are analyzed both theoretically and computationally. The results obtained show that our updating procedure, coupled with an adaptive strategy for determining whether to reinitialize or update the preconditioner, can enhance the performance of interior point methods on large problems.Comment: 22 page

    An asymptotically superlinearly convergent semismooth Newton augmented Lagrangian method for Linear Programming

    Get PDF
    Powerful interior-point methods (IPM) based commercial solvers, such as Gurobi and Mosek, have been hugely successful in solving large-scale linear programming (LP) problems. The high efficiency of these solvers depends critically on the sparsity of the problem data and advanced matrix factorization techniques. For a large scale LP problem with data matrix AA that is dense (possibly structured) or whose corresponding normal matrix AATAA^T has a dense Cholesky factor (even with re-ordering), these solvers may require excessive computational cost and/or extremely heavy memory usage in each interior-point iteration. Unfortunately, the natural remedy, i.e., the use of iterative methods based IPM solvers, although can avoid the explicit computation of the coefficient matrix and its factorization, is not practically viable due to the inherent extreme ill-conditioning of the large scale normal equation arising in each interior-point iteration. To provide a better alternative choice for solving large scale LPs with dense data or requiring expensive factorization of its normal equation, we propose a semismooth Newton based inexact proximal augmented Lagrangian ({\sc Snipal}) method. Different from classical IPMs, in each iteration of {\sc Snipal}, iterative methods can efficiently be used to solve simpler yet better conditioned semismooth Newton linear systems. Moreover, {\sc Snipal} not only enjoys a fast asymptotic superlinear convergence but is also proven to enjoy a finite termination property. Numerical comparisons with Gurobi have demonstrated encouraging potential of {\sc Snipal} for handling large-scale LP problems where the constraint matrix AA has a dense representation or AATAA^T has a dense factorization even with an appropriate re-ordering.Comment: Due to the limitation "The abstract field cannot be longer than 1,920 characters", the abstract appearing here is slightly shorter than that in the PDF fil

    Inexact Interior-Point Methods for Large Scale Linear and Convex Quadratic Semidefinite Programming

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    A New Preconditioning Approachfor an Interior Point–Proximal Method of Multipliers for Linear and Convex Quadratic Programming

    Get PDF
    In this paper, we address the efficient numerical solution of linear and quadratic programming problems, often of large scale. With this aim, we devise an infeasible interior point method, blended with the proximal method of multipliers, which in turn results in a primal-dual regularized interior point method. Application of this method gives rise to a sequence of increasingly ill-conditioned linear systems which cannot always be solved by factorization methods, due to memory and CPU time restrictions. We propose a novel preconditioning strategy which is based on a suitable sparsification of the normal equations matrix in the linear case, and also constitutes the foundation of a block-diagonal preconditioner to accelerate MINRES for linear systems arising from the solution of general quadratic programming problems. Numerical results for a range of test problems demonstrate the robustness of the proposed preconditioning strategy, together with its ability to solve linear systems of very large dimension

    Solving Saddle Point Formulations of Linear Programs with Frank-Wolfe

    Get PDF
    The problem of solving a linear program (LP) is ubiquitous in industry, yet in recent years the size of linear programming problems has grown and continues to do so. State-of-the-art LP solvers make use of the Simplex method and primal-dual interior-point methods which are able to provide accurate solutions in a reasonable amount of time for most problems. However, both the Simplex method and interior-point methods require solving a system of linear equations at each iteration, an operation that does not scale well with the size of the problem. In response to the growing size of linear programs and poor scalability of existing algorithms, researchers have started to consider first-order methods for solving large scale linear programs. The best known first-order method for general linear programming problems is PDLP. First-order methods for linear programming are characterized by having a matrix-vector product as their primary computational cost. We present a first-order primal-dual algorithm for solving saddle point formulations of linear programs, named FWLP (Frank-Wolfe Linear Programming). We provide some theoretical results regarding the behavior of our algorithm, however no convergence guarantees are provided. Numerical investigations suggest that our algorithm has error O(1/sqrt(k)) after k iterations, worse than that of PDLP, however we show that our algorithm has advantages for solving very large LPs in practice such as only needing part of the matrix A at each iteration
    corecore