308 research outputs found

    Introducing Interior-Point Methods for Introductory Operations Research Courses and/or Linear Programming Courses

    Get PDF
    In recent years the introduction and development of Interior-Point Methods has had a profound impact on optimization theory as well as practice, influencing the field of Operations Research and related areas. Development of these methods has quickly led to the design of new and efficient optimization codes particularly for Linear Programming. Consequently, there has been an increasing need to introduce theory and methods of this new area in optimization into the appropriate undergraduate and first year graduate courses such as introductory Operations Research and/or Linear Programming courses, Industrial Engineering courses and Math Modeling courses. The objective of this paper is to discuss the ways of simplifying the introduction of Interior-Point Methods for students who have various backgrounds or who are not necessarily mathematics majors

    Long step homogeneous interior point algorithm for the p* nonlinear complementarity problems

    Get PDF
    A P*-Nonlinear Complementarity Problem as a generalization of the P*-Linear Complementarity Problem is considered. We show that the long-step version of the homogeneous self-dual interior-point algorithm could be used to solve such a problem. The algorithm achieves linear global convergence and quadratic local convergence under the following assumptions: the function satisfies a modified scaled Lipschitz condition, the problem has a strictly complementary solution, and certain submatrix of the Jacobian is nonsingular on some compact set

    Unified Analysis of Kernel-Based Interior-Point Methods for \u3cem\u3eP\u3c/em\u3e *(κ)-LCP

    Get PDF
    We present an interior-point method for the P∗(κ)-linear complementarity problem (LCP) that is based on barrier functions which are defined by a large class of univariate functions called eligible kernel functions. This class is fairly general and includes the classical logarithmic function and the self-regular functions, as well as many non-self-regular functions as special cases. We provide a unified analysis of the method and give a general scheme on how to calculate the iteration bounds for the entire class. We also calculate the iteration bounds of both long-step and short-step versions of the method for several specific eligible kernel functions. For some of them we match the best known iteration bounds for the long-step method, while for the short-step method the iteration bounds are of the same order of magnitude. As far as we know, this is the first paper that provides a unified approach and comprehensive treatment of interior-point methods for P∗(κ)-LCPs based on the entire class of eligible kernel functions

    Interior-Point Algorithms Based on Primal-Dual Entropy

    Get PDF
    We propose a family of search directions based on primal-dual entropy in the context of interior point methods for linear programming. This new family contains previously proposed search directions in the context of primal-dual entropy. We analyze the new family of search directions by studying their primal-dual affine-scaling and constant-gap centering components. We then design primal-dual interior-point algorithms by utilizing our search directions in a homogeneous and self-dual framework. We present iteration complexity analysis of our algorithms and provide the results of computational experiments on NETLIB problems

    A new long-step interior point algorithm for linear programming based on the algebraic equivalent transformation

    Get PDF
    In this paper, we investigate a new primal-dual long-step interior point algorithm for linear optimization. Based on the step-size, interior point algorithms can be divided into two main groups, short-step and long-step methods. In practice, long-step variants perform better, but usually, a better theoretical complexity can be achieved for the short-step methods. One of the exceptions is the large-update algorithm of Ai and Zhang. The new wide neighbourhood and the main characteristics of the presented algorithm are based on their approach. In addition, we use the algebraic equivalent transformation technique by Darvay to determine the search directions of the method
    • …
    corecore