6 research outputs found

    Self-Organization in Mobile Networking Systems

    Get PDF

    Data distribution satellite

    Get PDF
    A description is given of a data distribution satellite (DDS) system. The DDS would operate in conjunction with the tracking and data relay satellite system to give ground-based users real time, two-way access to instruments in space and space-gathered data. The scope of work includes the following: (1) user requirements are derived; (2) communication scenarios are synthesized; (3) system design constraints and projected technology availability are identified; (4) DDS communications payload configuration is derived, and the satellite is designed; (5) requirements for earth terminals and network control are given; (6) system costs are estimated, both life cycle costs and user fees; and (7) technology developments are recommended, and a technology development plan is given. The most important results obtained are as follows: (1) a satellite designed for launch in 2007 is feasible and has 10 Gb/s capacity, 5.5 kW power, and 2000 kg mass; (2) DDS features include on-board baseband switching, use of Ku- and Ka-bands, multiple optical intersatellite links; and (3) system user costs are competitive with projected terrestrial communication costs

    Intergroup Joint Scheduling for Mitigating Asymmetric Uplink Interference in Self-Organizing Virtual Cell Networks

    No full text
    We introduce the concept of self-organizing VCN (virtual cell network). Here self-organizing VCN topology for efficient operation will be configured, and the functions of the each element will be defined. Also, the operation scenarios of VCN will be described. Then, we propose an efficient scheduling algorithm that considers the asymmetry of interference between downlink and uplink to mitigate intercell interference with little computing overhead. The basic concept is to construct scheduling groups that consist of several users. Each user in a scheduling group is affiliated with a different cell. Then, the intercell groups are managed efficiently in the proposed VCNs. There is no need for the exchange of a lot of information among base stations to schedule the users over the entire network

    Space Biology and Medicine

    Get PDF
    Volume IV is devoted to examining the medical and associated organizational measures used to maintain the health of space crews and to support their performance before, during, and after space flight. These measures, collectively known as the medical flight support system, are important contributors to the safety and success of space flight. The contributions of space hardware and the spacecraft environment to flight safety and mission success are covered in previous volumes of the Space Biology and Medicine series. In Volume IV, we address means of improving the reliability of people who are required to function in the unfamiliar environment of space flight as well as the importance of those who support the crew. Please note that the extensive collaboration between Russian and American teams for this volume of work resulted in a timeframe of publication longer than originally anticipated. Therefore, new research or insights may have emerged since the authors composed their chapters and references. This volume includes a list of authors' names and addresses should readers seek specifics on new information. At least three groups of factors act to perturb human physiological homeostasis during space flight. All have significant influence on health, psychological, and emotional status, tolerance, and work capacity. The first and most important of these factors is weightlessness, the most specific and radical change in the ambient environment; it causes a variety of functional and structural changes in human physiology. The second group of factors precludes the constraints associated with living in the sealed, confined environment of spacecraft. Although these factors are not unique to space flight, the limitations they entail in terms of an uncomfortable environment can diminish the well-being and performance of crewmembers in space. The third group of factors includes the occupational and social factors associated with the difficult, critical nature of the crewmembers' work: the risks involved in space flight, changes in circadian rhythms, and intragroup interactions. The physical and emotional stress and fatigue that develop under these conditions also can disturb human health and performance. In addition to these factors, the risk also exists that crewmembers will develop various illnesses during flight. The risk of illness is no less during space flight than on Earth, and may actually be greater for some classes of diseases

    GVSU Undergraduate and Graduate Bulletin, 1998-1999

    Get PDF
    Grand Valley State University 1998-1999 undergraduate and/or graduate bulletin published annually to provide students with information and guidance for enrollment.https://scholarworks.gvsu.edu/course_catalogs/1066/thumbnail.jp
    corecore