19 research outputs found

    Towards Automatic Blotch Detection for Film Restoration by Comparison of Spatio-Temporal Neighbours

    Get PDF
    In this paper, a new method of blotch detection for digitised film sequences is proposed. Due to the aging of film stocks, their poor storage and/or repeated viewing, it is estimated that approximately 50% of all films produced prior to 1950 have either been destroyed or rendered unwatchable [1,2]. To prevent their complete destruction, original film reels must be scanned into digital format; however, any defects such as blotches will be retained. By combining a variation of a linear time, contour tracing technique with a simple temporal nearest neighbour algorithm, a preliminary detection system has been created. Using component labelling of dirt and sparkle the overall performance of the completed system, in terms of time and accuracy, will compare favourably to traditional motion compensated detection methods. This small study (based on 13 film sequences) represents a significant first step towards automatic blotch detection

    Pattern Recognition

    Get PDF
    A wealth of advanced pattern recognition algorithms are emerging from the interdiscipline between technologies of effective visual features and the human-brain cognition process. Effective visual features are made possible through the rapid developments in appropriate sensor equipments, novel filter designs, and viable information processing architectures. While the understanding of human-brain cognition process broadens the way in which the computer can perform pattern recognition tasks. The present book is intended to collect representative researches around the globe focusing on low-level vision, filter design, features and image descriptors, data mining and analysis, and biologically inspired algorithms. The 27 chapters coved in this book disclose recent advances and new ideas in promoting the techniques, technology and applications of pattern recognition

    Pix2HDR -- A pixel-wise acquisition and deep learning-based synthesis approach for high-speed HDR videos

    Full text link
    Accurately capturing dynamic scenes with wide-ranging motion and light intensity is crucial for many vision applications. However, acquiring high-speed high dynamic range (HDR) video is challenging because the camera's frame rate restricts its dynamic range. Existing methods sacrifice speed to acquire multi-exposure frames. Yet, misaligned motion in these frames can still pose complications for HDR fusion algorithms, resulting in artifacts. Instead of frame-based exposures, we sample the videos using individual pixels at varying exposures and phase offsets. Implemented on a pixel-wise programmable image sensor, our sampling pattern simultaneously captures fast motion at a high dynamic range. We then transform pixel-wise outputs into an HDR video using end-to-end learned weights from deep neural networks, achieving high spatiotemporal resolution with minimized motion blurring. We demonstrate aliasing-free HDR video acquisition at 1000 FPS, resolving fast motion under low-light conditions and against bright backgrounds - both challenging conditions for conventional cameras. By combining the versatility of pixel-wise sampling patterns with the strength of deep neural networks at decoding complex scenes, our method greatly enhances the vision system's adaptability and performance in dynamic conditions.Comment: 14 pages, 14 figure

    Fundamentals and Applications of N-pulse Particle Image Velocimetry-accelerometry: Towards Advanced Measurements of Complex Flows and Turbulence

    Get PDF
    abstract: Over the past three decades, particle image velocimetry (PIV) has been continuously growing to become an informative and robust experimental tool for fluid mechanics research. Compared to the early stage of PIV development, the dynamic range of PIV has been improved by about an order of magnitude (Adrian, 2005; Westerweel et al., 2013). Further improvement requires a breakthrough innovation, which constitutes the main motivation of this dissertation. N-pulse particle image velocimetry-accelerometry (N-pulse PIVA, where N>=3) is a promising technique to this regard. It employs bursts of N pulses to gain advantages in both spatial and temporal resolution. The performance improvement by N-pulse PIVA is studied using particle tracking (i.e. N-pulse PTVA), and it is shown that an enhancement of at least another order of magnitude is achievable. Furthermore, the capability of N-pulse PIVA to measure unsteady acceleration and force is demonstrated in the context of an oscillating cylinder interacting with surrounding fluid. The cylinder motion, the fluid velocity and acceleration, and the fluid force exerted on the cylinder are successfully measured. On the other hand, a key issue of multi-camera registration for the implementation of N-pulse PIVA is addressed with an accuracy of 0.001 pixel. Subsequently, two applications of N-pulse PTVA to complex flows and turbulence are presented. A novel 8-pulse PTVA analysis was developed and validated to accurately resolve particle unsteady drag in post-shock flows. It is found that the particle drag is substantially elevated from the standard drag due to flow unsteadiness, and a new drag correlation incorporating particle Reynolds number and unsteadiness is desired upon removal of the uncertainty arising from non-uniform particle size. Next, the estimation of turbulence statistics utilizes the ensemble average of 4-pulse PTV data within a small domain of an optimally determined size. The estimation of mean velocity, mean velocity gradient and isotropic dissipation rate are presented and discussed by means of synthetic turbulence, as well as a tomographic measurement of turbulent boundary layer. The results indicate the superior capability of the N-pulse PTV based method to extract high-spatial-resolution high-accuracy turbulence statistics.Dissertation/ThesisAnimation of N-pulse PIVA measurement of flow-structure interactionDoctoral Dissertation Mechanical Engineering 201

    Three dimensional DCT based video compression.

    Get PDF
    by Chan Kwong Wing Raymond.Thesis (M.Phil.)--Chinese University of Hong Kong, 1997.Includes bibliographical references (leaves 115-123).Acknowledgments --- p.iTable of Contents --- p.ii-vList of Tables --- p.viList of Figures --- p.viiAbstract --- p.1Chapter Chapter 1 : --- IntroductionChapter 1.1 --- An Introduction to Video Compression --- p.3Chapter 1.2 --- Overview of Problems --- p.4Chapter 1.2.1 --- Analog Video and Digital Problems --- p.4Chapter 1.2.2 --- Low Bit Rate Application Problems --- p.4Chapter 1.2.3 --- Real Time Video Compression Problems --- p.5Chapter 1.2.4 --- Source Coding and Channel Coding Problems --- p.6Chapter 1.2.5 --- Bit-rate and Quality Problems --- p.7Chapter 1.3 --- Organization of the Thesis --- p.7Chapter Chapter 2 : --- Background and Related WorkChapter 2.1 --- Introduction --- p.9Chapter 2.1.1 --- Analog Video --- p.9Chapter 2.1.2 --- Digital Video --- p.10Chapter 2.1.3 --- Color Theory --- p.10Chapter 2.2 --- Video Coding --- p.12Chapter 2.2.1 --- Predictive Coding --- p.12Chapter 2.2.2 --- Vector Quantization --- p.12Chapter 2.2.3 --- Subband Coding --- p.13Chapter 2.2.4 --- Transform Coding --- p.14Chapter 2.2.5 --- Hybrid Coding --- p.14Chapter 2.3 --- Transform Coding --- p.15Chapter 2.3.1 --- Discrete Cosine Transform --- p.16Chapter 2.3.1.1 --- 1-D Fast Algorithms --- p.16Chapter 2.3.1.2 --- 2-D Fast Algorithms --- p.17Chapter 2.3.1.3 --- Multidimensional DCT Algorithms --- p.17Chapter 2.3.2 --- Quantization --- p.18Chapter 2.3.3 --- Entropy Coding --- p.18Chapter 2.3.3.1 --- Huffman Coding --- p.19Chapter 2.3.3.2 --- Arithmetic Coding --- p.19Chapter Chapter 3 : --- Existing Compression SchemeChapter 3.1 --- Introduction --- p.20Chapter 3.2 --- Motion JPEG --- p.20Chapter 3.3 --- MPEG --- p.20Chapter 3.4 --- H.261 --- p.22Chapter 3.5 --- Other Techniques --- p.23Chapter 3.5.1 --- Fractals --- p.23Chapter 3.5.2 --- Wavelets --- p.23Chapter 3.6 --- Proposed Solution --- p.24Chapter 3.7 --- Summary --- p.25Chapter Chapter 4 : --- Fast 3D-DCT AlgorithmsChapter 4.1 --- Introduction --- p.27Chapter 4.1.1 --- Motivation --- p.27Chapter 4.1.2 --- Potentials of 3D DCT --- p.28Chapter 4.2 --- Three Dimensional Discrete Cosine Transform (3D-DCT) --- p.29Chapter 4.2.1 --- Inverse 3D-DCT --- p.29Chapter 4.2.2 --- Forward 3D-DCT --- p.30Chapter 4.3 --- 3-D FCT (3-D Fast Cosine Transform Algorithm --- p.30Chapter 4.3.1 --- Partitioning and Rearrangement of Data Cube --- p.30Chapter 4.3.1.1 --- Spatio-temporal Data Cube --- p.30Chapter 4.3.1.2 --- Spatio-temporal Transform Domain Cube --- p.31Chapter 4.3.1.3 --- Coefficient Matrices --- p.31Chapter 4.3.2 --- 3-D Inverse Fast Cosine Transform (3-D IFCT) --- p.32Chapter 4.3.2.1 --- Matrix Representations --- p.32Chapter 4.3.2.2 --- Simplification of the calculation steps --- p.33Chapter 4.3.3 --- 3-D Forward Fast Cosine Transform (3-D FCT) --- p.35Chapter 4.3.3.1 --- Decomposition --- p.35Chapter 4.3.3.2 --- Reconstruction --- p.36Chapter 4.4 --- The Fast Algorithm --- p.36Chapter 4.5 --- Example using 4x4x4 IFCT --- p.38Chapter 4.6 --- Complexity Comparison --- p.43Chapter 4.6.1 --- Complexity of Multiplications --- p.43Chapter 4.6.2 --- Complexity of Additions --- p.43Chapter 4.7 --- Implementation Issues --- p.44Chapter 4.8 --- Summary --- p.46Chapter Chapter 5 : --- QuantizationChapter 5.1 --- Introduction --- p.49Chapter 5.2 --- Dynamic Ranges of 3D-DCT Coefficients --- p.49Chapter 5.3 --- Distribution of 3D-DCT AC Coefficients --- p.54Chapter 5.4 --- Quantization Volume --- p.55Chapter 5.4.1 --- Shifted Complement Hyperboloid --- p.55Chapter 5.4.2 --- Quantization Volume --- p.58Chapter 5.5 --- Scan Order for Quantized 3D-DCT Coefficients --- p.59Chapter 5.6 --- Finding Parameter Values --- p.60Chapter 5.7 --- Experimental Results from Using the Proposed Quantization Values --- p.65Chapter 5.8 --- Summary --- p.66Chapter Chapter 6 : --- Entropy CodingChapter 6.1 --- Introduction --- p.69Chapter 6.1.1 --- Huffman Coding --- p.69Chapter 6.1.2 --- Arithmetic Coding --- p.71Chapter 6.2 --- Zero Run-Length Encoding --- p.73Chapter 6.2.1 --- Variable Length Coding in JPEG --- p.74Chapter 6.2.1.1 --- Coding of the DC Coefficients --- p.74Chapter 6.2.1.2 --- Coding of the DC Coefficients --- p.75Chapter 6.2.2 --- Run-Level Encoding of the Quantized 3D-DCT Coefficients --- p.76Chapter 6.3 --- Frequency Analysis of the Run-Length Patterns --- p.76Chapter 6.3.1 --- The Frequency Distributions of the DC Coefficients --- p.77Chapter 6.3.2 --- The Frequency Distributions of the DC Coefficients --- p.77Chapter 6.4 --- Huffman Table Design --- p.84Chapter 6.4.1 --- DC Huffman Table --- p.84Chapter 6.4.2 --- AC Huffman Table --- p.85Chapter 6.5 --- Implementation Issue --- p.85Chapter 6.5.1 --- Get Category --- p.85Chapter 6.5.2 --- Huffman Encode --- p.86Chapter 6.5.3 --- Huffman Decode --- p.86Chapter 6.5.4 --- PutBits --- p.88Chapter 6.5.5 --- GetBits --- p.90Chapter Chapter 7 : --- "Contributions, Concluding Remarks and Future Work"Chapter 7.1 --- Contributions --- p.92Chapter 7.2 --- Concluding Remarks --- p.93Chapter 7.2.1 --- The Advantages of 3D DCT codec --- p.94Chapter 7.2.2 --- Experimental Results --- p.95Chapter 7.1 --- Future Work --- p.95Chapter 7.2.1 --- Integer Discrete Cosine Transform Algorithms --- p.95Chapter 7.2.2 --- Adaptive Quantization Volume --- p.96Chapter 7.2.3 --- Adaptive Huffman Tables --- p.96Appendices:Appendix A : The detailed steps in the simplification of Equation 4.29 --- p.98Appendix B : The program Listing of the Fast DCT Algorithms --- p.101Appendix C : Tables to Illustrate the Reording of the Quantized Coefficients --- p.110Appendix D : Sample Values of the Quantization Volume --- p.111Appendix E : A 16-bit VLC table for AC Run-Level Pairs --- p.113References --- p.11

    Segmentation of motion picture images and image sequences

    Get PDF

    Motion-induced degradations of temporally sampled images

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1985.MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERINGBibliography: leaves 155-160.by Stephen Charles Hsu.M.S

    Salient stills

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Architecture, 1992.Includes bibliographical references (leaves 67-70).by Laura A. Teodosio.M.S

    Novel block-based motion estimation and segmentation for video coding

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Interdisciplinarity in the Age of the Triple Helix: a Film Practitioner's Perspective

    Get PDF
    This integrative chapter contextualises my research including articles I have published as well as one of the creative artefacts developed from it, the feature film The Knife That Killed Me. I review my work considering the ways in which technology, industry methods and academic practice have evolved as well as how attitudes to interdisciplinarity have changed, linking these to Etzkowitz and Leydesdorff’s ‘Triple Helix’ model (1995). I explore my own experiences and observations of opportunities and challenges that have been posed by the intersection of different stakeholder needs and expectations, both from industry and academic perspectives, and argue that my work provides novel examples of the applicability of the ‘Triple Helix’ to the creative industries. The chapter concludes with a reflection on the evolution and direction of my work, the relevance of the ‘Triple Helix’ to creative practice, and ways in which this relationship could be investigated further
    corecore