276 research outputs found

    Monitoring Land Surface Deformation with Satellite ScanSAR Images: Case Studies on Large Earthquakes in China

    Get PDF
    This chapter presents a new application of scanning interferometric synthetic aperture radar (ScanSAR) interferometry in monitoring land surface deformation caused by large earthquakes. To make better use of the ScanSAR data and obtain a wider deformation observation, this research studied and analyzed certain key elements of ScanSAR interferometry, including coherence, co-registering, methods of removing orbit errors, correction of atmosphere effects, and geoid undulation. The wide swath mode (WSM) is also known as the ScanSAR mode by which synthetic aperture time is shared by adjacent sub-swaths and azimuth resolution that is traded off for a wider coverage. So, it is possible to monitor a larger area of earthquake deformation. In this study, we obtained ScanSAR and Image Mode (IM) data and analyzed coherence, co-registering, methods of removing orbit errors, correction of atmosphere effects, and geoid undulation to monitor land surface deformation caused by large earthquakes in the 405 × 405 km field of the Wenchuan earthquake and Yutian earthquake, respectively, in China. The results obtained agree well with that of the investigations of the crustal motion in the study areas

    Burst mode to strip-map mode SAR interferometry of ALOS PALSAR

    Full text link
    A complete processing flow is proposed to implement burst mode to strip-map mode interferometry for ALOS PALSAR data. The processing flow is applied to an interferometric pair comprised of FBD (High Resolution mode [Dual polarization], belonging to strip-map mode) and WB1 (Wide observation mode, belonging to burst mode) mode of PALSAR. Interferometric products including differential interferometric phase and DEM are generated. The evaluation of these products shows satisfactory precision.Geosciences, MultidisciplinaryRemote SensingCPCI-S(ISTP)

    Signal theory and processing for burst-mode and ScanSAR interferometry

    Get PDF

    Multi-mode SAR Interferometry Processing Research and Implementation

    Full text link
    Current operation mode of SAR can be roughly divided into two types: strip-map mode and burst mode. The most conventional mode is strip-map mode, in which the swath width is quite limited. The other type is burst mode, which is an active option to overcome this limitation by cyclically scanning several subswaths, known as ScanSAR. In addition, Envisat ASAR has another type of burst mode, that is, Alternating Polarization mode. ALOS PALSAR and Radarsat-1 also have their own ScanSAR operation modes, but each of them is distinctive from the others in implementation. Numerous theoretical results and applications of interferometry using strip-map data have been published before. Interferometry with burst mode data, however, is much rarer and different from the case of the traditional strip-map mode from raw data focusing to interferogram generation because of its burst nature of data acquisition pattern. In our study, we put our emphasis on each kind of burst mode interferometry and mixed mode interferometry. Until now, our successful research work includes Envisat ASAR WS-WS, IM-WS and ALOS PALSAR WB1-WB1 Interferometry. Other development activities including Envisat AP-AP and Radarsat-1 SNA-SNA interferometry are still on going. In the following paper, we will present our results and give an overview of multi-mode SAR. interferometry for the present spaceborne SAR sensors.Engineering, Electrical & ElectronicPhysics, AppliedEICPCI-S(ISTP)

    Kinematic fault slip evolution source models of the 2008 M7.9 Wenchuan earthquake in China from SAR interferometry, GPS and teleseismic analysis and implications for Longmen Shan tectonics

    Get PDF
    The M_w 7.9 2008 Wenchuan earthquake ruptured about 280 km of faults in the Longmen Shan of Sichuan province, China, at the eastern edge of the Tibetan Plateau. We use teleseismic waveforms with geodetic data from Global Positioning System, synthetic aperture radar interferometry and image amplitude correlation to produce a source model of this earthquake. The model describes evolution of fault slip during the earthquake. The geodetic data constrains the spatial distribution of fault slip and the seismic waveforms constrain mostly the time evolution of slip. We find that the earthquake started with largely thrust motion on an imbricate system of faults beneath the central Longmen Shan, including the Beichuan Fault and Pengguan Fault, with fault slip at depth extending up to 50 km northwest of the mountain front. The fault ruptures continued northeast along the Beichuan Fault with more oblique slip (right-lateral and thrust) and the proportion of lateral motion increasing in the northern Longmen Shan. The northernmost fault segment has a much steeper dip, consistent with nearly pure strike-slip motion. The kinematic source model shows that the rupture propagated to the northeast at about 2.5–3.0 km s^(−1), producing a cascade of subevents with a total duration of about 110 s. The complex fault ruptures caused shortening and uplift of the extremely steep central Longmen Shan, which supports models where the steep edge of the plateau is formed by thrusting over the strong crust of the Sichuan Basin

    Opportunistic radar imaging using a multichannel receiver

    Get PDF
    Bistatic Synthetic Aperture Radars have a physically separated transmitter and receiver where one or both are moving. Besides the advantages of reduced procurement and maintenance costs, the receiving system can sense passively while remaining covert which offers obvious tactical advantages. In this work, spaceborne monostatic SARs are used as emitters of opportunity with a stationary ground-based receiver. The imaging mode of SAR systems over land is usually a wide-swath mode such as ScanSAR or TOPSAR in which the antenna scans the area of interest in range to image a larger swath at the expense of degraded cross-range resolution compared to the conventional stripmap mode. In the bistatic geometry considered here, the signals from the sidelobes of the scanning beams illuminating the adjacent sub-swath are exploited to produce images with high cross-range resolution from data obtained from a SAR system operating in wide-swath mode. To achieve this, the SAR inverse problem is rigorously formulated and solved using a Maximum A Posteriori estimation method providing enhanced cross-range resolution compared to that obtained by classical burst-mode SAR processing. This dramatically increases the number of useful images that can be produced using emitters of opportunity. Signals from any radar satellite in the receiving band of the receiver can be used, thus further decreasing the revisit time of the area of interest. As a comparison, a compressive sensing-based method is critically analysed and proves more sensitive to off-grid targets and only suited to sparse scene. The novel SAR imaging method is demonstrated using simulated data and real measurements from C-band satellites such as RADARSAT-2 and ESA’s satellites ERS-2, ENVISAT and Sentinel-1A. In addition, this thesis analyses the main technological issues in bistatic SAR such as the azimuth-variant characteristic of bistatic data and the effect of imperfect synchronisation between the non-cooperative transmitter and the receiver

    VenSAR: A multi-functional S-band radar for the EnVision mission to Venus

    No full text
    The EnVision science case requires an instrument capable of providing global stereo images at 10-50 m resolution, phase information from at least 20% of the surface for interferometry, as well as the ability to provide 1-10 m resolution images of specific targets in the C- to S-band range (X-band does not penetrate through the atmosphere to the surface of Venus). VenSAR is adapted from the individual phase centre design of NovaSAR-S, which offers much greater flexibility that can be optimised for Venus science. In addition, its S-band wavelength offers an acceptable compromise between InSAR resolution and atmospheric stability. The use of an off-the-shelf system, adapted for use at Venus, saves cost and provides for directly comparable data from Venus and Earth at a resolution two orders of magnitude better than Magellan, for the first time allowing the direct measurement of rates of tectonic and volcanic processes on another planet

    Mexico City land subsidence in 2014-2015 with Sentinel-1 IW TOPS: results using the Intermittent SBAS (ISBAS) technique

    Get PDF
    Differential Interferometric Synthetic Aperture Radar (DInSAR) can be considered as an efficient and cost effective technique for monitoring land subsidence due to its large spatial coverage and high accuracy provided. The recent commissioning of the first Sentinel-1 satellite offers improved support to operational surveys using DInSAR due to regular observations from a wide-area product. In this paper we show the results of an intermittent small-baseline subset (ISBAS) time-series analysis of 18 Interferometric Wide swath (IW) products of a 39,000 km2 area of Mexico acquired between 3 October 2014 and 7 May 2015 using the Terrain Observation with Progressive Scans in azimuth (TOPS) imaging mode. The ISBAS processing was based upon the analysis of 143 small-baseline differential interferograms. After the debursting, merging and deramping steps necessary to process Sentinel-1 IW roducts, the method followed a standard approach to the DInSAR analysis. The Sentinel-1 ISBAS results confirm the magnitude and extent of the deformation that was observed in Mexico City, Chalco, Ciudad Nezahualcóyotl and Iztapalapa by other C-band and L-band DInSAR studies during the 1990s and 2000s. Subsidence velocities from the Sentinel-1 analysis are, in places, in excess of -24 cm/year along the satellite line-of-sight, equivalent to over ~-40 cm/year vertical rates. This paper demonstrates the potential of Sentinel-1 IW TOPS imagery to support wide-area DInSAR surveys over what is a very large and diverse area in terms of land cover and topography
    • …
    corecore