20,295 research outputs found

    The Role of Licence-Exemption in Spectrum Reform

    Get PDF
    Spectrum reform initiatives in the US and Europe have identified a need to move away from the traditional command and control approach towards flexible and tradable licences and licence-exemption. Current regulatory initiatives are tending to focus on the flexible licensing route, and there is a risk that licence-exemption will be sidelined during the important formative years of this major policy transition. This must not happen; licence-exemption supports innovation and entrepreneurship and is an important second leg of a market-based spectrum management regime. A current case in point is the transition in UHF frequency bands from analogue to digital TV, where licence exempt use of resulting gaps in the spectrum could yield enormous benefits for citizens and consumers.spectrum policy, spectrum management, wireless services, deregulation, Telecommunications, regulation, Networks

    A Review of TV White Space Technology and its Deployments in Africa

    Get PDF
    The emergence of bandwidth-driven applications in the current wireless communication environment is driving a paradigm shift from the conventional fixed spectrum assignment policy to intelligent and dynamic spectrum access. Practical demands for efficient spectrum utilization have continued to drive the development of TV white space technology to provide affordable and reliable wireless connectivity. It is envisaged that transition from analogue transmission to Digital Terrestrial Television (DTT) creates more spectrum opportunity for TV white space access and regulatory agencies of many countries had begun to explore this opportunity to address spectrum scarcity. To convey the evolutionary trends in the development of TV white space technology, this paper presents a comprehensive review on the contemporary approaches to TV white space technology and practical deployments of pilot projects in Africa. The paper outlines the activities in TV white space technology, which include regulations and standardization, commercial trials, research challenges, open issues and future research directions. Furthermore, it also provides an overview of the current industrial trends in TV white space technology which demonstrates that cognitive radio as an enabling technology for TV white space technology

    Power Allocation in the TV White Space under Constraint on Secondary System Self-Interference

    Get PDF

    Malawi's TV white space regulations : a review and comparison with FCC and Ofcom regulations

    Get PDF
    Regulators are in the process of framing regulations to allow secondary use of vacant TV channels while protecting TV broadcast services from harmful interference. While the US and UK regulators have already passed such regulations in 2008 and 2015 respectively, other countries are still in drafting stages and the underlying circumstances in these countries could be different from those of the US and UK. Malawi released its final draft regulations in 2016. While the US and UK legislate for dynamic spectrum access and licence-exemption for secondary users, Malawi’s draft regulations require such users to apply for a licence for assigned TV white space spectrum. This paper provides an analytical review of Malawi’s regulations and a comparison with FCC and Ofcom regulations, which new regulations can build on. This analysis will also inform future work on network management tools that can enable practical deployment and coexistence of large-scale TV white space networks in a dynamic spectrum access environment in Africa

    Vehicular Dynamic Spectrum Access: Using Cognitive Radio for Automobile Networks

    Get PDF
    Vehicular Dynamic Spectrum Access (VDSA) combines the advantages of dynamic spectrum access to achieve higher spectrum efficiency and the special mobility pattern of vehicle fleets. This dissertation presents several noval contributions with respect to vehicular communications, especially vehicle-to-vehicle communications. Starting from a system engineering aspect, this dissertation will present several promising future directions for vehicle communications, taking into consideration both the theoretical and practical aspects of wireless communication deployment. This dissertation starts with presenting a feasibility analysis using queueing theory to model and estimate the performance of VDSA within a TV whitespace environment. The analytical tool uses spectrum measurement data and vehicle density to find upper bounds of several performance metrics for a VDSA scenario in TVWS. Then, a framework for optimizing VDSA via artificial intelligence and learning, as well as simulation testbeds that reflect realistic spectrum sharing scenarios between vehicle networks and heterogeneous wireless networks including wireless local area networks and wireless regional area networks. Detailed experimental results justify the testbed for emulating a mobile dynamic spectrum access environment composed of heterogeneous networks with four dimensional mutual interference. Vehicular cooperative communication is the other proposed technique that combines the cooperative communication technology and vehicle platooning, an emerging concept that is expected to both increase highway utilization and enhance both driver experience and safety. This dissertation will focus on the coexistence of multiple vehicle groups in shared spectrum, where intra-group cooperation and inter-group competition are investigated in the aspect of channel access. Finally, a testbed implementation VDSA is presented and a few applications are developed within a VDSA environment, demonstrating the feasibility and benefits of some features in a future transportation system

    Joint Design and Separation Principle for Opportunistic Spectrum Access in the Presence of Sensing Errors

    Full text link
    We address the design of opportunistic spectrum access (OSA) strategies that allow secondary users to independently search for and exploit instantaneous spectrum availability. Integrated in the joint design are three basic components: a spectrum sensor that identifies spectrum opportunities, a sensing strategy that determines which channels in the spectrum to sense, and an access strategy that decides whether to access based on imperfect sensing outcomes. We formulate the joint PHY-MAC design of OSA as a constrained partially observable Markov decision process (POMDP). Constrained POMDPs generally require randomized policies to achieve optimality, which are often intractable. By exploiting the rich structure of the underlying problem, we establish a separation principle for the joint design of OSA. This separation principle reveals the optimality of myopic policies for the design of the spectrum sensor and the access strategy, leading to closed-form optimal solutions. Furthermore, decoupling the design of the sensing strategy from that of the spectrum sensor and the access strategy, the separation principle reduces the constrained POMDP to an unconstrained one, which admits deterministic optimal policies. Numerical examples are provided to study the design tradeoffs, the interaction between the spectrum sensor and the sensing and access strategies, and the robustness of the ensuing design to model mismatch.Comment: 43 pages, 10 figures, submitted to IEEE Transactions on Information Theory in Feb. 200

    A novel MAC Protocol for Cognitive Radio Networks

    Get PDF
    In Partial Fulfilment of the Requirements for the Degree Doctor of Philosophy from the University of BedfordshireThe scarcity of bandwidth in the radio spectrum has become more vital since the demand for wireless applications has increased. Most of the spectrum bands have been allocated although many studies have shown that these bands are significantly underutilized most of the time. The problem of unavailability of spectrum bands and the inefficiency in their utilization have been smartly addressed by the cognitive radio (CR) technology which is an opportunistic network that senses the environment, observes the network changes, and then uses knowledge gained from the prior interaction with the network to make intelligent decisions by dynamically adapting transmission characteristics. In this thesis, recent research and survey about the advances in theory and applications of cognitive radio technology has been reviewed. The thesis starts with the essential background on cognitive radio techniques and systems and discusses those characteristics of CR technology, such as standards, applications and challenges that all can help make software radio more personal. It then presents advanced level material by extensively reviewing the work done so far in the area of cognitive radio networks and more specifically in medium access control (MAC) protocol of CR. The list of references will be useful to both researchers and practitioners in this area. Also, it can be adopted as a graduate-level textbook for an advanced course on wireless communication networks. The development of new technologies such as Wi-Fi, cellular phones, Bluetooth, TV broadcasts and satellite has created immense demand for radio spectrum which is a limited natural resource ranging from 30KHz to 300GHz. For every wireless application, some portion of the radio spectrum needs to be purchased, and the Federal Communication Commission (FCC) allocates the spectrum for some fee for such services. This static allocation of the radio spectrum has led to various problems such as saturation in some bands, scarcity, and lack of radio resources to new wireless applications. Most of the frequencies in the radio spectrum have been allocated although many studies have shown that the allocated bands are not being used efficiently. The CR technology is one of the effective solutions to the shortage of spectrum and the inefficiency of its utilization. In this thesis, a detailed investigation on issues related to the protocol design for cognitive radio networks with particular emphasis on the MAC layer is presented. A novel Dynamic and Decentralized and Hybrid MAC (DDH-MAC) protocol that lies between the CR MAC protocol families of globally available common control channel (GCCC) and local control channel (non-GCCC). First, a multi-access channel MAC protocol, which integrates the best features of both GCCC and non-GCCC, is proposed. Second, an enhancement to the protocol is proposed by enabling it to access more than one control channel at the same time. The cognitive users/secondary users (SUs) always have access to one control channel and they can identify and exploit the vacant channels by dynamically switching across the different control channels. Third, rapid and efficient exchange of CR control information has been proposed to reduce delays due to the opportunistic nature of CR. We have calculated the pre-transmission time for CR and investigate how this time can have a significant effect on nodes holding a delay sensitive data. Fourth, an analytical model, including a Markov chain model, has been proposed. This analytical model will rigorously analyse the performance of our proposed DDH-MAC protocol in terms of aggregate throughput, access delay, and spectrum opportunities in both the saturated and non-saturated networks. Fifth, we develop a simulation model for the DDH-MAC protocol using OPNET Modeler and investigate its performance for queuing delays, bit error rates, backoff slots and throughput. It could be observed from both the numerical and simulation results that when compared with existing CR MAC protocols our proposed MAC protocol can significantly improve the spectrum utilization efficiency of wireless networks. Finally, we optimize the performance of our proposed MAC protocol by incorporating multi-level security and making it energy efficient
    • …
    corecore