291 research outputs found

    Mixed-Criticality Scheduling with I/O

    Full text link
    This paper addresses the problem of scheduling tasks with different criticality levels in the presence of I/O requests. In mixed-criticality scheduling, higher criticality tasks are given precedence over those of lower criticality when it is impossible to guarantee the schedulability of all tasks. While mixed-criticality scheduling has gained attention in recent years, most approaches typically assume a periodic task model. This assumption does not always hold in practice, especially for real-time and embedded systems that perform I/O. For example, many tasks block on I/O requests until devices signal their completion via interrupts; both the arrival of interrupts and the waking of blocked tasks can be aperiodic. In our prior work, we developed a scheduling technique in the Quest real-time operating system, which integrates the time-budgeted management of I/O operations with Sporadic Server scheduling of tasks. This paper extends our previous scheduling approach with support for mixed-criticality tasks and I/O requests on the same processing core. Results show the effective schedulability of different task sets in the presence of I/O requests is superior in our approach compared to traditional methods that manage I/O using techniques such as Sporadic Servers.Comment: Second version has replaced simulation experiments with real machine experiments, third version fixed minor error in Equation 5 (missing a plus sign

    Schedulability analysis of global scheduling algorithms on multiprocessor platforms

    Get PDF
    This paper addresses the schedulability problem of periodic and sporadic real-time task sets with constrained deadlines preemptively scheduled on a multiprocessor platform composed by identical processors. We assume that a global work-conserving scheduler is used and migration from one processor to another is allowed during a task lifetime. First, a general method to derive schedulability conditions for multiprocessor real-time systems will be presented. The analysis will be applied to two typical scheduling algorithms: earliest deadline first (EDF) and fixed priority (FP). Then, the derived schedulability conditions will be tightened, refining the analysis with a simple and effective technique that significantly improves the percentage of accepted task sets. The effectiveness of the proposed test is shown through an extensive set of synthetic experiments

    Schedulability analysis of global scheduling algorithms on multiprocessor platforms

    Get PDF
    This paper addresses the schedulability problem of periodic and sporadic real-time task sets with constrained deadlines preemptively scheduled on a multiprocessor platform composed by identical processors. We assume that a global work-conserving scheduler is used and migration from one processor to another is allowed during a task lifetime. First, a general method to derive schedulability conditions for multiprocessor real-time systems will be presented. The analysis will be applied to two typical scheduling algorithms: earliest deadline first (EDF) and fixed priority (FP). Then, the derived schedulability conditions will be tightened, refining the analysis with a simple and effective technique that significantly improves the percentage of accepted task sets. The effectiveness of the proposed test is shown through an extensive set of synthetic experiments

    Scheduling techniques to improve the worst-case execution time of real-time parallel applications on heterogeneous platforms

    Get PDF
    The key to providing high performance and energy-efficient execution for hard real-time applications is the time predictable and efficient usage of heterogeneous multiprocessors. However, schedulability analysis of parallel applications executed on unrelated heterogeneous multiprocessors is challenging and has not been investigated adequately by earlier works. The unrelated model is suitable to represent many of the multiprocessor platforms available today because a task (i.e., sequential code) may exhibit a different work-case-execution-time (WCET) on each type of processor on an unrelated heterogeneous multiprocessors platform. A parallel application can be realistically modeled as a directed acyclic graph (DAG), where the nodes are sequential tasks and the edges are dependencies among the tasks. This thesis considers a sporadic DAG model which is used broadly to analyze and verify the real-time requirements of parallel applications. A global work-conserving scheduler can efficiently utilize an unrelated platform by executing the tasks of a DAG on different processor types. However, it is challenging to compute an upper bound on the worst-case schedule length of the DAG, called makespan, which is used to verify whether the deadline of a DAG is met or not. There are two main challenges. First, because of the heterogeneity of the processors, the WCET for each task of the DAG depends on which processor the task is executing on during actual runtime. Second, timing anomalies are the main obstacle to compute the makespan even for the simpler case when all the processors are of the same type, i.e., homogeneous multiprocessors. To that end, this thesis addresses the following problem: How we can schedule multiple sporadic DAGs on unrelated multiprocessors such that all the DAGs meet their deadlines. Initially, the thesis focuses on homogeneous multiprocessors that is a special case of unrelated multiprocessors to understand and tackle the main challenge of timing anomalies. A novel timing-anomaly-free scheduler is proposed which can be used to compute the makespan of a DAG just by simulating the execution of the tasks based on this proposed scheduler. A set of representative task-based parallel OpenMP applications from the BOTS benchmark suite are modeled as DAGs to investigate the timing behavior of real-world applications. A simulation framework is developed to evaluate the proposed method. Furthermore, the thesis targets unrelated multiprocessors and proposes a global scheduler to execute the tasks of a single DAG to an unrelated multiprocessors platform. Based on the proposed scheduler, methods to compute the makespan of a single DAG are introduced. A set of representative parallel applications from the BOTS benchmark suite are modeled as DAGs that execute on unrelated multiprocessors. Furthermore, synthetic DAGs are generated to examine additional structures of parallel applications and various platform capabilities. A simulation framework that simulates the execution of the tasks of a DAG on an unrelated multiprocessor platform is introduced to assess the effectiveness of the proposed makespan computations. Finally, based on the makespan computation of a single DAG this thesis presents the design and schedulability analysis of global and federated scheduling of sporadic DAGs that execute on unrelated multiprocessors

    New Schedulability Analysis for MrsP

    Get PDF
    In this paper we consider a spin-based multiprocessor locking protocol, named the Multiprocessor resource sharing Protocol (MrsP). MrsP adopts a helping-mechanism where the preempted resource holder can migrate. The original schedulability analysis of MrsP carries considerable pessimism as it has been developed assuming limited knowledge of the resource usage for each remote task. In this paper new MrsP schedulability analysis is developed that takes into account such knowledge to provide a less pessimistic analysis than that of the original analysis. Our experiments show that, theoretically, the new analysis offers better (at least identical) schedulability than the FIFO non-preemptive protocol, and can outperform FIFO preemptive spin locks under systems with either intensive resource contention or long critical sections. The paper also develops analysis to include the overhead of MrsP’s helping mechanism. Although MrsP’s helping mechanism theoretically increases schedulability, our evaluation shows that this increase may be negated when the overheads of migrations are taken into account. To mitigate this, we have modified the MrsP protocol to introduce a short non-preemptive section following migration. Our experiments demonstrate that with migration cost, MrsP may not be favourable for short critical sections but provides a better schedulability than other FIFO spin-based protocols when long critical sections are applied

    A survey of techniques for reducing interference in real-time applications on multicore platforms

    Get PDF
    This survey reviews the scientific literature on techniques for reducing interference in real-time multicore systems, focusing on the approaches proposed between 2015 and 2020. It also presents proposals that use interference reduction techniques without considering the predictability issue. The survey highlights interference sources and categorizes proposals from the perspective of the shared resource. It covers techniques for reducing contentions in main memory, cache memory, a memory bus, and the integration of interference effects into schedulability analysis. Every section contains an overview of each proposal and an assessment of its advantages and disadvantages.This work was supported in part by the Comunidad de Madrid Government "Nuevas TĂ©cnicas de Desarrollo de Software de Tiempo Real Embarcado Para Plataformas. MPSoC de PrĂłxima GeneraciĂłn" under Grant IND2019/TIC-17261

    A Fixed-Priority Scheduling Algorithm for Multiprocessor Real-Time Systems

    Get PDF
    • …
    corecore