1,023 research outputs found

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201

    Energy-Delay Tradeoffs of Virtual Base Stations With a Computational-Resource-Aware Energy Consumption Model

    Full text link
    The next generation (5G) cellular network faces the challenges of efficiency, flexibility, and sustainability to support data traffic in the mobile Internet era. To tackle these challenges, cloud-based cellular architectures have been proposed where virtual base stations (VBSs) play a key role. VBSs bring further energy savings but also demands a new energy consumption model as well as the optimization of computational resources. This paper studies the energy-delay tradeoffs of VBSs with delay tolerant traffic. We propose a computational-resource-aware energy consumption model to capture the total energy consumption of a VBS and reflect the dynamic allocation of computational resources including the number of CPU cores and the CPU speed. Based on the model, we analyze the energy-delay tradeoffs of a VBS considering BS sleeping and state switching cost to minimize the weighted sum of power consumption and average delay. We derive the explicit form of the optimal data transmission rate and find the condition under which the energy optimal rate exists and is unique. Opportunities to reduce the average delay and achieve energy savings simultaneously are observed. We further propose an efficient algorithm to jointly optimize the data rate and the number of CPU cores. Numerical results validate our theoretical analyses and under a typical simulation setting we find more than 60% energy savings can be achieved by VBSs compared with conventional base stations under the EARTH model, which demonstrates the great potential of VBSs in 5G cellular systems.Comment: 5 pages, 3 figures, accepted by ICCS'1

    Energy sustainable paradigms and methods for future mobile networks: A survey

    Full text link
    In this survey, we discuss the role of energy in the design of future mobile networks and, in particular, we advocate and elaborate on the use of energy harvesting (EH) hardware as a means to decrease the environmental footprint of 5G technology. To take full advantage of the harvested (renewable) energy, while still meeting the quality of service required by dense 5G deployments, suitable management techniques are here reviewed, highlighting the open issues that are still to be solved to provide eco-friendly and cost-effective mobile architectures. Several solutions have recently been proposed to tackle capacity, coverage and efficiency problems, including: C-RAN, Software Defined Networking (SDN) and fog computing, among others. However, these are not explicitly tailored to increase the energy efficiency of networks featuring renewable energy sources, and have the following limitations: (i) their energy savings are in many cases still insufficient and (ii) they do not consider network elements possessing energy harvesting capabilities. In this paper, we systematically review existing energy sustainable paradigms and methods to address points (i) and (ii), discussing how these can be exploited to obtain highly efficient, energy self-sufficient and high capacity networks. Several open issues have emerged from our review, ranging from the need for accurate energy, transmission and consumption models, to the lack of accurate data traffic profiles, to the use of power transfer, energy cooperation and energy trading techniques. These challenges are here discussed along with some research directions to follow for achieving sustainable 5G systems.Comment: Accepted by Elsevier Computer Communications, 21 pages, 9 figure
    • …
    corecore