210 research outputs found

    A Stackelberg-game approach for disaster-recovery communications utilizing cooperative D2D

    Get PDF
    In this paper, we investigate disaster-recovery com- munications utilizing two-cell cooperative D2D communications. Specifically, one cell is in a healthy area while the other is in a disaster area. A user equipment (UE) in the healthy area aims to assist a UE in the disaster area to recover wireless information transfer (WIT) via an energy harvesting (EH) relay. In the healthy area, the cellular BS shares the spectrum with the UE, however, both of them may belong to different service providers. Thus, the UE pays an amount of price as incentive to the BS as part of two processes: energy trading and interference pricing. We formulate these two processes as two Stackelberg games, where their equilibrium is derived as closed- form solutions. The results help provide a sustainable framework for disaster recovery when the involving parties juggle between energy trading, interference compromise and payment incentives in establishing communications during the recovery process

    Energy Efficient Two-hop D2D Communications Underlay 5G Networks: A Stackelberg Game Approach

    Get PDF
    Although coverage and capacity are the key elements of the 5G user experience, a dominant part of the population living in rural areas still experience inferior connectivity. Several solutions have been proposed to address this issue. They include deploying small cells, increasing the number of sectors per eNodeB, and reusing signal repetition. However, most of them require complex deployment and expensive fees. Accordingly, many efforts have been deployed on coverage extension software. Even so, many critical issues related to public safety, relay capacity, and devices power constraints are still challenging. As a contribution, we propose in this paper a spectral and energy-efficient two-hop device to device (D2D) relay selection algorithm. Our main goal is to extend the connectivity to the out-of-coverage (OOC) devices. Contrarily to previous solutions in which the relay is selected centrally or individually, we propose a distributed two-stage algorithm based on the Stackelberg game to involve all the competing devices. In the first stage, the OOC devices (OCDUs) are matched with the relays maximizing their spectral efficiency, and the required bandwidth for each one is determined. Then, a power control stage is investigated to calculate the optimal transmission power. The numerical and simulation analysis shows that the proposed schema outperforms the former solutions in total system capacity, spectral efficiency (SE), and energy efficiency (EE) while reducing the complexity
    corecore