107 research outputs found

    An Overview of Massive MIMO Technology Components in METIS

    Get PDF
    As the standardization of full-dimension MIMO systems in the Third Generation Partnership Project progresses, the research community has started to explore the potential of very large arrays as an enabler technology for meeting the requirements of fifth generation systems. Indeed, in its final deliverable, the European 5G project METIS identifies massive MIMO as a key 5G enabler and proposes specific technology components that will allow the cost-efficient deployment of cellular systems taking advantage of hundreds of antennas at cellular base stations. These technology components include handling the inherent pilot-data resource allocation trade-off in a near optimal fashion, a novel random access scheme supporting a large number of users, coded channel state information for sparse channels in frequency-division duplexing systems, managing user grouping and multi-user beamforming, and a decentralized coordinated transceiver design. The aggregate effect of these components enables massive MIMO to contribute to the METIS objectives of delivering very high data rates and managing dense populations

    Distributed Multicell Beamforming Design Approaching Pareto Boundary with Max-Min Fairness

    Full text link
    This paper addresses coordinated downlink beamforming optimization in multicell time-division duplex (TDD) systems where a small number of parameters are exchanged between cells but with no data sharing. With the goal to reach the point on the Pareto boundary with max-min rate fairness, we first develop a two-step centralized optimization algorithm to design the joint beamforming vectors. This algorithm can achieve a further sum-rate improvement over the max-min optimal performance, and is shown to guarantee max-min Pareto optimality for scenarios with two base stations (BSs) each serving a single user. To realize a distributed solution with limited intercell communication, we then propose an iterative algorithm by exploiting an approximate uplink-downlink duality, in which only a small number of positive scalars are shared between cells in each iteration. Simulation results show that the proposed distributed solution achieves a fairness rate performance close to the centralized algorithm while it has a better sum-rate performance, and demonstrates a better tradeoff between sum-rate and fairness than the Nash Bargaining solution especially at high signal-to-noise ratio.Comment: 8 figures. To Appear in IEEE Trans. Wireless Communications, 201

    Distributed CSI Acquisition and Coordinated Precoding for TDD Multicell MIMO Systems

    Full text link

    Cooperative Feedback for MIMO Interference Channels

    Full text link
    Multi-antenna precoding effectively mitigates the interference in wireless networks. However, the precoding efficiency can be significantly degraded by the overhead due to the required feedback of channel state information (CSI). This paper addresses such an issue by proposing a systematic method of designing precoders for the two-user multiple-input-multiple-output (MIMO) interference channels based on finite-rate CSI feedback from receivers to their interferers, called cooperative feedback. Specifically, each precoder is decomposed into inner and outer precoders for nulling interference and improving the data link array gain, respectively. The inner precoders are further designed to suppress residual interference resulting from finite-rate cooperative feedback. To regulate residual interference due to precoder quantization, additional scalar cooperative feedback signals are designed to control transmitters' power using different criteria including applying interference margins, maximizing sum throughput, and minimizing outage probability. Simulation shows that such additional feedback effectively alleviates performance degradation due to quantized precoder feedback.Comment: 5 pages; submitted to IEEE ICC 201

    Joint Beamforming and Power Control in Coordinated Multicell: Max-Min Duality, Effective Network and Large System Transition

    Full text link
    This paper studies joint beamforming and power control in a coordinated multicell downlink system that serves multiple users per cell to maximize the minimum weighted signal-to-interference-plus-noise ratio. The optimal solution and distributed algorithm with geometrically fast convergence rate are derived by employing the nonlinear Perron-Frobenius theory and the multicell network duality. The iterative algorithm, though operating in a distributed manner, still requires instantaneous power update within the coordinated cluster through the backhaul. The backhaul information exchange and message passing may become prohibitive with increasing number of transmit antennas and increasing number of users. In order to derive asymptotically optimal solution, random matrix theory is leveraged to design a distributed algorithm that only requires statistical information. The advantage of our approach is that there is no instantaneous power update through backhaul. Moreover, by using nonlinear Perron-Frobenius theory and random matrix theory, an effective primal network and an effective dual network are proposed to characterize and interpret the asymptotic solution.Comment: Some typos in the version publised in the IEEE Transactions on Wireless Communications are correcte

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201
    corecore