759 research outputs found

    On optimal design and applications of linear transforms

    Get PDF
    Linear transforms are encountered in many fields of applied science and engineering. In the past, conventional block transforms provided acceptable answers to different practical problems. But now, under increasing competitive pressures, with the growing reservoir of theory and a corresponding development of computing facilities, a real demand has been created for methods that systematically improve performance. As a result the past two decades have seen the explosive growth of a class of linear transform theory known as multiresolution signal decomposition. The goal of this work is to design and apply these advanced signal processing techniques to several different problems. The optimal design of subband filter banks is considered first. Several design examples are presented for M-band filter banks. Conventional design approaches are found to present problems when the number of constraints increases. A novel optimization method is proposed using a step-by-step design of a hierarchical subband tree. This method is shown to possess performance improvements in applications such as subband image coding. The subband tree structuring is then discussed and generalized algorithms are presented. Next, the attention is focused on the interference excision problem in direct sequence spread spectrum (DSSS) communications. The analytical and experimental performance of the DSSS receiver employing excision are presented. Different excision techniques are evaluated and ranked along with the proposed adaptive subband transform-based excises. The robustness of the considered methods is investigated for either time-localized or frequency-localized interferers. A domain switchable excision algorithm is also presented. Finally, sonic of the ideas associated with the interference excision problem are utilized in the spectral shaping of a particular biological signal, namely heart rate variability. The improvements for the spectral shaping process are shown for time-frequency analysis. In general, this dissertation demonstrates the proliferation of new tools for digital signal processing

    Narrow-band interference rejection in spread spectrum using an eigen analysis based approach

    Get PDF
    A new adaptive technique is suggested for rejecting narrow-band interferences in spread spectrum communications. When data is coded using a pseudo-noise code, the received signal consists of a wide-band signal with almost white spectral properties, thermal noise, and correlated narrow-band interferences. A new approach is proposed which exploits the statistical properties of the received signal via eigenanalysis of the received data. While the energy of the wide-band signal is distributed over all the eigenvalues of the signal autocorrelation matrix, the energy of the interference is concentrated in a few large eigenvalues. Hence, the eigenvectors corresponding to the large eigenvalues are termed the interference subspace. The proposed method derives a. weight vector residing in the subspace spanned by the rest of the eigenvectors termed the noise subspace. Consequently, it is orthogonal to the interference subspace. The eigenanalysis based interference cancellation is sub-optimal in a known signal environment, but is superior to the Wiener-Hopf filter when the signal statistics are estimated from a limited amount of data. A fast and effective adaptive algorithm is derived using the power method

    Channel Estimation in Multicarrier Communication Systems

    Get PDF
    The data rate and spectrum efficiency of wireless mobile communications have been significantly improved over the last decade or so. Recently, the advanced systems such as 3GPP LTE and terrestrial digital TV broadcasting have been sophisticatedly developed using OFDM and CDMA technology. In general, most mobile communication systems transmit bits of information in the radio space to the receiver. The radio channels in mobile radio systems are usually multipath fading channels, which cause inter-symbol interference (ISI) in the received signal. To remove ISI from the signal, there is a need of strong equalizer which requires knowledge on the channel impulse response (CIR).This is primarily provided by a separate channel estimator. Usually the channel estimation is based on the known sequence of bits, which is unique for a certain transmitter and which is repeated in every transmission burst. Thus, the channel estimator is able to estimate CIR for each burst separately by exploiting the known transmitted bits and the corresponding received samples. In this thesis we investigate and compare various efficient channel estimation schemes for OFDM systems which can also be extended to MC DS-CDMA systems.The channel estimation can be performed by either inserting pilot tones into all subcarriers of OFDM symbols with a specific period or inserting pilot tones into each OFDM symbol. Two major types of pilot arrangement such as block type and comb type pilot have been focused employing Least Square Error (LSE) and Minimum Mean Square Error (MMSE) channel estimators. Block type pilot sub-carriers is especially suitable for slow-fading radio channels whereas comb type pilots provide better resistance to fast fading channels. Also comb type pilot arrangement is sensitive to frequency selectivity when comparing to block type arrangement. However, there is another supervised technique called Implicit Training (IT) based channel estimation which exploits the first order statistics in the received data, induced by superimposing periodic training sequences with good correlation properties, along with the information symbols. Hence, the need for additional time slots for training the equalizer is avoided. The performance of the estimators is presented in terms of the mean square estimation error (MSEE) and bit error rate (BER)

    Near far resistant detection for CDMA personal communication systems.

    Get PDF
    The growth of Personal Communications, the keyword of the 90s, has already the signs of a technological revolution. The foundations of this revolution are currently set through the standardization of the Universal Mobile Telecommunication System (UMTS), a communication system with synergistic terrestrial and satellite segments. The main characteristic of the UMTS radio interface, is the provision of ISDN services. Services with higher than voice data rates require more spectrum, thus techniques that utilize spectrum as efficiently as possible are currently at the forefront of the research community interests. Two of the most spectrally efficient multiple access technologies, namely. Code Division Multiple Access (CDMA) and Time Division Multiple Access (TDMA) concentrate the efforts of the European telecommunity.This thesis addresses problems and. proposes solutions for CDMA systems that must comply with the UMTS requirements. Prompted by Viterbi's call for further extending the potential of CDMA through signal processing at the receiving end, we propose new Minimum Mean Square Error receiver architectures. MMSE detection schemes offer significant advantages compared to the conventional correlation based receivers as they are NEar FAr Resistant (NEFAR) over a wide range of interfering power levels. The NEFAR characteristic of these detectors reduces considerably the requirements of the power control loops currently found in commercial CDMA systems. MMSE detectors are also found, to have significant performance gains over other well established interference cancellation techniques like the decorrelating detector, especially in heavily loaded system conditions. The implementation architecture of MMSE receivers can be either Multiple-Input Multiple Output (MIMO) or Single-Input Single-Output. The later offers not only complexity that is comparable to the conventional detector, but also has the inherent advantage of employing adaptive algorithms which can be used to provide both the dispreading and the interference cancellation function, without the knowledge of the codes of interfering users. Furthermore, in multipath fading channels, adaptive MMSE detectors can exploit the multipath diversity acting as RAKE combiners. The later ability is distinctive to MMSE based receivers, and it is achieved in an autonomous fashion, without the knowledge of the multipath intensity profile. The communicator achieves its performance objectives by the synergy of the signal processor and the channel decoder. According to the propositions of this thesis, the form of the signal processor needs to be changed, in order to exploit the horizons of spread spectrum signaling. However, maximum likelihood channel decoding algorithms need not change. It is the way that these algorithms are utilized that needs to be revis ed. In this respect, we identify three major utilization scenarios and an attempt is made to quantify which of the three best matches the requirements of a UMTS oriented CDMA radio interface. Based on our findings, channel coding can be used as a mapping technique from the information bit to a more ''intelligent" chip, matching the ''intelligence" of the signal processor

    Harmonic Estimation Of Distorted Power Signals Using PSO – Adaline

    Get PDF
    In recent times, power system harmonics has got a great deal of interest by many Power system Engineers. It is primarily due to the fact that non-linear loads comprise an increasing portion of the total load for a typical industrial plant. This increase in proportion of non-linear load and due to increased use of semi-conductor based power processors by utility companies has detoriated the Power Quality. Harmonics are a mathematical way of describing distortion in voltage or current waveform. The term harmonic refers to a component of a waveform occurs at an integer multiple of the fundamental frequency. Several methods had been proposed, such as discrete Fourier transforms, least square error technique, Kalman filtering, adaptive notch filters etc; Unlike above techniques, which treat harmonic estimation as completely non-linear problem there are some other hybrid techniques like Genetic Algorithm (GA), LS-Adaline, LS-PSOPC which decompose the problem of harmonic estimation into linear and non-linear problem. The results of LS-PSOPC and LS-Adaline has most attractive features of compactness and fastness. . Our new proposed technique tries to reduce the pitfalls in the LS-PSOPC, LS-Adaline techniques. With new technique we tried to estimate the Amplitudes by Least square estimator, frequency of the signal by PSOPC and phases of the harmonics by Adaline technique using MATLAB program. Harmonic signals were estimated by using LS-PSOPC, PSOPC-Adaline. Errors in estimating the signal by both the techniques are calculated and compared with each other

    Design and implementation of a downlink MC-CDMA receiver

    Get PDF
    Cette thèse présente une étude d'un système complet de transmission en liaison descendante utilisant la technologie multi-porteuse avec l'accès multiple par division de code (Multi-Carrier Code Division Multiple Access, MC-CDMA). L'étude inclut la synchronisation et l'estimation du canal pour un système MC-CDMA en liaison descendante ainsi que l'implémentation sur puce FPGA d'un récepteur MC-CDMA en liaison descendante en bande de base. Le MC-CDMA est une combinaison de la technique de multiplexage par fréquence orthogonale (Orthogonal Frequency Division Multiplexing, OFDM) et de l'accès multiple par répartition de code (CDMA), et ce dans le but d'intégrer les deux technologies. Le système MC-CDMA est conçu pour fonctionner à l'intérieur de la contrainte d'une bande de fréquence de 5 MHz pour les modèles de canaux intérieur/extérieur pédestre et véhiculaire tel que décrit par le "Third Genaration Partnership Project" (3GPP). La composante OFDM du système MC-CDMA a été simulée en utilisant le logiciel MATLAB dans le but d'obtenir des paramètres de base. Des codes orthogonaux à facteur d'étalement variable (OVSF) de longueur 8 ont été choisis comme codes d'étalement pour notre système MC-CDMA. Ceci permet de supporter des taux de transmission maximum jusquà 20.6 Mbps et 22.875 Mbps (données non codées, pleine charge de 8 utilisateurs) pour les canaux intérieur/extérieur pédestre et véhiculaire, respectivement. Une étude analytique des expressions de taux d'erreur binaire pour le MC-CDMA dans un canal multivoies de Rayleigh a été réalisée dans le but d'évaluer rapidement et de façon précise les performances. Des techniques d'estimation de canal basées sur les décisions antérieures ont été étudiées afin d'améliorer encore plus les performances de taux d'erreur binaire du système MC-CDMA en liaison descendante. L'estimateur de canal basé sur les décisions antérieures et utilisant le critère de l'erreur quadratique minimale linéaire avec une matrice' de corrélation du canal de taille 64 x 64 a été choisi comme étant un bon compromis entre la performance et la complexité pour une implementation sur puce FPGA. Une nouvelle séquence d'apprentissage a été conçue pour le récepteur dans la configuration intérieur/extérieur pédestre dans le but d'estimer de façon grossière le temps de synchronisation et le décalage fréquentiel fractionnaire de la porteuse dans le domaine du temps. Les estimations fines du temps de synchronisation et du décalage fréquentiel de la porteuse ont été effectués dans le domaine des fréquences à l'aide de sous-porteuses pilotes. Un récepteur en liaison descendante MC-CDMA complet pour le canal intérieur /extérieur pédestre avec les synchronisations en temps et en fréquence en boucle fermée a été simulé avant de procéder à l'implémentation matérielle. Le récepteur en liaison descendante en bande de base pour le canal intérieur/extérieur pédestre a été implémenté sur un système de développement fabriqué par la compagnie Nallatech et utilisant le circuit XtremeDSP de Xilinx. Un transmetteur compatible avec le système de réception a également été réalisé. Des tests fonctionnels du récepteur ont été effectués dans un environnement sans fil statique de laboratoire. Un environnement de test plus dynamique, incluant la mobilité du transmetteur, du récepteur ou des éléments dispersifs, aurait été souhaitable, mais n'a pu être réalisé étant donné les difficultés logistiques inhérentes. Les taux d'erreur binaire mesurés avec différents nombres d'usagers actifs et différentes modulations sont proches des simulations sur ordinateurs pour un canal avec bruit blanc gaussien additif

    Engineering evaluations and studies. Volume 3: Exhibit C

    Get PDF
    High rate multiplexes asymmetry and jitter, data-dependent amplitude variations, and transition density are discussed

    GPS Interference Mitigation Using Derivative-free Kalman Filter-based RNN

    Get PDF
    The global positioning system (GPS) with accurate positioning and timing properties has become integral part of all applications around the world. Radio frequency interference can significantly decrease the performance of GPS receivers or even completely prohibit the acquisition or tracking of satellites. The approaches of system performances that can be further enhanced by preprocessing to reject the jamming signal will be investigated. A recurrent neural network (RNN) predictor for the GPS anti-jamming applications will be proposed. The adaptive RNN predictor is utilized to accurately predict the narrowband waveform based on an unscented Kalman filter (UKF)-based algorithm. The UKF algorithm as a derivative-free alternative to the extended Kalman filter (EKF) in the framework of state-estimation is adopted to achieve better performance in terms of convergence rate and quality of solution. The adaptive RNN filter can be successfully applied for the suppression of interference with a number of different narrowband formats, i.e. continuous wave interference (CWI), multi-tone CWI, swept CWI and pulsed CWI, to emulate realistic circumstances. Simulation results show that the proposed UKF-based scheme can offer the superior performances to suppress the interference over the conventional methods by computing mean squared prediction error (MSPE) and signal-to-noise ratio (SNR) improvements
    corecore