19,448 research outputs found

    Non-cooperative power control game in D2D underlying networks with variant system conditions

    Get PDF
    In this paper, the problem of power control using a game theoretic approach based on sigmoid cost function is studied for device-to-device (D2D) communications underlying cellular networks. A non-cooperative game, where each D2D transmitter and a cellular user select their own transmit power level independently, is analyzed to minimize their user-serving cost function and achieve a target signal to interference-plus-noise-ratio (SINR) requirement. It is proved analytically that the Nash equilibrium point of the game exists and it is unique under certain constraints. Numerical results verify the analysis and demonstrate the effectiveness of the proposed game with variant system conditions, such as path loss exponents, target SINR, interference caused by the cellular user, pricing coefficients, and sigmoid control parameter

    Efficiency Resource Allocation for Device-to-Device Underlay Communication Systems: A Reverse Iterative Combinatorial Auction Based Approach

    Full text link
    Peer-to-peer communication has been recently considered as a popular issue for local area services. An innovative resource allocation scheme is proposed to improve the performance of mobile peer-to-peer, i.e., device-to-device (D2D), communications as an underlay in the downlink (DL) cellular networks. To optimize the system sum rate over the resource sharing of both D2D and cellular modes, we introduce a reverse iterative combinatorial auction as the allocation mechanism. In the auction, all the spectrum resources are considered as a set of resource units, which as bidders compete to obtain business while the packages of the D2D pairs are auctioned off as goods in each auction round. We first formulate the valuation of each resource unit, as a basis of the proposed auction. And then a detailed non-monotonic descending price auction algorithm is explained depending on the utility function that accounts for the channel gain from D2D and the costs for the system. Further, we prove that the proposed auction-based scheme is cheat-proof, and converges in a finite number of iteration rounds. We explain non-monotonicity in the price update process and show lower complexity compared to a traditional combinatorial allocation. The simulation results demonstrate that the algorithm efficiently leads to a good performance on the system sum rate.Comment: 26 pages, 6 fgures; IEEE Journals on Selected Areas in Communications, 201

    Pricing and Resource Allocation via Game Theory for a Small-Cell Video Caching System

    Full text link
    Evidence indicates that downloading on-demand videos accounts for a dramatic increase in data traffic over cellular networks. Caching popular videos in the storage of small-cell base stations (SBS), namely, small-cell caching, is an efficient technology for reducing the transmission latency whilst mitigating the redundant transmissions of popular videos over back-haul channels. In this paper, we consider a commercialized small-cell caching system consisting of a network service provider (NSP), several video retailers (VR), and mobile users (MU). The NSP leases its SBSs to the VRs for the purpose of making profits, and the VRs, after storing popular videos in the rented SBSs, can provide faster local video transmissions to the MUs, thereby gaining more profits. We conceive this system within the framework of Stackelberg game by treating the SBSs as a specific type of resources. We first model the MUs and SBSs as two independent Poisson point processes, and develop, via stochastic geometry theory, the probability of the specific event that an MU obtains the video of its choice directly from the memory of an SBS. Then, based on the probability derived, we formulate a Stackelberg game to jointly maximize the average profit of both the NSP and the VRs. Also, we investigate the Stackelberg equilibrium by solving a non-convex optimization problem. With the aid of this game theoretic framework, we shed light on the relationship between four important factors: the optimal pricing of leasing an SBS, the SBSs allocation among the VRs, the storage size of the SBSs, and the popularity distribution of the VRs. Monte-Carlo simulations show that our stochastic geometry-based analytical results closely match the empirical ones. Numerical results are also provided for quantifying the proposed game-theoretic framework by showing its efficiency on pricing and resource allocation.Comment: Accepted to appear in IEEE Journal on Selected Areas in Communications, special issue on Video Distribution over Future Interne

    Spectrum review: potential reform directions

    Get PDF
    The purpose of this review is to ensure Australia\u27s spectrum policy and management framework framework will serve the country well into the future, and to examine what policy and regulatory changes are needed to meet current challenges. Introduction On 23 May 2014 the Minister for Communications, the Hon Malcolm Turnbull MP, announced a review of spectrum policy arrangements. The review is an opportunity to boost innovation and productivity with resulting benefits to the broader community. It is also part of the Government’s commitment to streamlining regulation and cutting red tape. The Department of Communications (the Department) is undertaking the review in conjunction with the Australian Communications and Media Authority (ACMA). Terms of Reference for the review were released with the Minister’s announcement along with an issues paper seeking stakeholder feedback. The review will report to the Minister in early 2015. Implementation of reforms will likely commence in 2015 but the Department is seeking feedback from stakeholders on sequencing and timing. This paper provides context and suggests some reform principles and options for discussion. These have been prepared after consideration of stakeholder feedback on the issues paper. The proposals are not intended to cover the full range of possible reforms and feedback as to amendments or additional proposals is welcome. The proposals do not represent the final views of the Department or the views of the Australian Government

    Intervention in Power Control Games With Selfish Users

    Full text link
    We study the power control problem in wireless ad hoc networks with selfish users. Without incentive schemes, selfish users tend to transmit at their maximum power levels, causing significant interference to each other. In this paper, we study a class of incentive schemes based on intervention to induce selfish users to transmit at desired power levels. An intervention scheme can be implemented by introducing an intervention device that can monitor the power levels of users and then transmit power to cause interference to users. We mainly consider first-order intervention rules based on individual transmit powers. We derive conditions on design parameters and the intervention capability to achieve a desired outcome as a (unique) Nash equilibrium and propose a dynamic adjustment process that the designer can use to guide users and the intervention device to the desired outcome. The effect of using intervention rules based on aggregate receive power is also analyzed. Our results show that with perfect monitoring intervention schemes can be designed to achieve any positive power profile while using interference from the intervention device only as a threat. We also analyze the case of imperfect monitoring and show that a performance loss can occur. Lastly, simulation results are presented to illustrate the performance improvement from using intervention rules and compare the performances of different intervention rules.Comment: 33 pages, 6 figure
    corecore