349 research outputs found

    Kinect Range Sensing: Structured-Light versus Time-of-Flight Kinect

    Full text link
    Recently, the new Kinect One has been issued by Microsoft, providing the next generation of real-time range sensing devices based on the Time-of-Flight (ToF) principle. As the first Kinect version was using a structured light approach, one would expect various differences in the characteristics of the range data delivered by both devices. This paper presents a detailed and in-depth comparison between both devices. In order to conduct the comparison, we propose a framework of seven different experimental setups, which is a generic basis for evaluating range cameras such as Kinect. The experiments have been designed with the goal to capture individual effects of the Kinect devices as isolatedly as possible and in a way, that they can also be adopted, in order to apply them to any other range sensing device. The overall goal of this paper is to provide a solid insight into the pros and cons of either device. Thus, scientists that are interested in using Kinect range sensing cameras in their specific application scenario can directly assess the expected, specific benefits and potential problem of either device.Comment: 58 pages, 23 figures. Accepted for publication in Computer Vision and Image Understanding (CVIU

    Interaction for creative applications with the Kinect v2 device

    Get PDF
    Human-Computer Interaction (HCI) is a multidisciplinary field of research that designs, evaluates and implements interactive ways of communication between computer systems and people. The evolution of different technologies in the last decades has contributed to the expansion of HCI into other fields of study as computer vision, cognitive science, psychology, industrial design, and also into interactive art. The present document contains a case of HCI in the context of interactive art. In a first step we analyse what kind of interaction can be achieved with the available equipment: a range imaging camera, a computer and a video projector. Then, three range imaging techniques capable of fulfilling our objective are studied and some devices available for purchasing and based on these techniques are compared. Thereafter, we study and compare the two acquired range imaging devices: the Kinect for Windows v1 and the Kinect for Windows v2. In a later step we build our interaction system with the Kinect for Windows v2 and we test it. We use Processing as a programming environment in order to apply creative coding and to try the different types of interaction that this device allows. Finally, with the experience gained in the previous studies and in these test, we present three final interactive programs

    3D Gait Abnormality Detection Employing Contactless IR-UWB Sensing Phenomenon

    Get PDF
    Gait disorder diagnosis and rehabilitation is one area where human perception and observation are highly integrated. Predominantly, gait evaluation, comprises technological devices for gait analysis such as, dedicated force sensors, cameras, and wearable sensor based solutions, however they are limited by insufficient gait parameter recognition, post processing, installation costs, mobility, and skin irritation issues. Thus, the proposed study concentrates on the creation of a widely deployable, noncontact and non-intrusive gait recognition method from impulse radio ultra wideband (IR-UWB) sensing phenomenon, where a standalone IR-UWB system can detect gait problems with less human intervention. A 3D human motion model for gait identification from IR-UWB has been proposed with embracing spherical trigonometry and vector algebra to determine knee angles. Subsequently, normal and abnormal walking subjects were involved in this study. Abnormal gait subjects belong to the spastic gait category only. The prototype has been tested in both the anechoic and multipath environments. The outcomes have been corroborated with a simultaneously deployed Kinect Xbox sensor and supported by statistical graphical approach Bland and Altman (B&A) analysis

    Assessment of active video games' energy expenditure in children with overweight and obesity and differences by gender

    Get PDF
    (1) Background: Childhood obesity has become a main global health problem and active video games (AVG) could be used to increase energy expenditure. The aim of this study was to investigate the energy expenditure during an AVG intervention combined with exercise, differentiating by gender. (2) Methods: A total of 45 children with overweight or obesity (19 girls) performed an AVG intervention combined with exercise. The AVG used were the Xbox Kinect, Nintendo Wii, dance mats, BKOOL cycling simulator, and Nintendo Switch. The energy expenditure was estimated from the heart rate recorded during the sessions and the data from the individual maximal tests. (3) Results: The mean energy expenditure was 315.1 kilocalories in a one-hour session. Participants spent the most energy on BKOOL, followed by Ring Fit Adventures, Dance Mats, Xbox Kinect, and the Nintendo Wii, with significant differences between BKOOL and the Nintendo Wii. Significant differences between boys and girls were found, but were partially due to the difference in weight, VO2max, and fat-free mass. (4) Conclusions: The energy expenditure with AVG combined with multi-component exercise was 5.68 kcal/min in boys and 4.66 kcal/min in girls with overweight and obesity. AVG could be an effective strategy to increase energy expenditure in children and adolescents with overweight and obesit

    Modelling the Xbox 360 Kinect for visual servo control applications

    Get PDF
    A research report submitted to the faculty of Engineering and the built environment, University of the Witwatersrand, Johannesburg, in partial fulfilment of the requirements for the degree of Master of Science in Engineering. Johannesburg, August 2016There has been much interest in using the Microsoft Xbox 360 Kinect cameras for visual servo control applications. It is a relatively cheap device with expected shortcomings. This work contributes to the practical considerations of using the Kinect for visual servo control applications. A comprehensive characterisation of the Kinect is synthesised from existing literature and results from a nonlinear calibration procedure. The Kinect reduces computational overhead on image processing stages, such as pose estimation or depth estimation. It is limited by its 0.8m to 3.5m practical depth range and quadratic depth resolution of 1.8mm to 35mm, respectively. Since the Kinect uses an infra-red (IR) projector, a class one laser, it should not be used outdoors, due to IR saturation, and objects belonging to classes of non- IR-friendly surfaces should be avoided, due to IR refraction, absorption, or specular reflection. Problems of task stability due to invalid depth measurements in Kinect depth maps and practical depth range limitations can be reduced by using depth map preprocessing and activating classical visual servoing techniques when Kinect-based approaches are near task failure.MT201

    Non-Intrusive Gait Recognition Employing Ultra Wideband Signal Detection

    Get PDF
    A self-regulating and non-contact impulse radio ultra wideband (IR-UWB) based 3D human gait analysis prototype has been modeled and developed with the help of supervised machine learning (SML) for this application for the first time. The work intends to provide a rewarding assistive biomedical application which would help doctors and clinicians monitor human gait trait and abnormalities with less human intervention in the fields of physiological examinations, physiotherapy, home assistance, rehabilitation success determination and health diagnostics, etc. The research comprises IR-UWB data gathered from a number of male and female participants in both anechoic chamber and multi-path environments. In total twenty four individuals have been recruited, where twenty individuals were said to have normal gait and four persons complained of knee pain that resulted in compensated spastic walking patterns. A 3D postural model of human movements has been created from the backscattering property of the radar pulses employing understanding of spherical trigonometry and vector fields. This subjective data (height of the body areas from the ground) of an individual have been recorded and implemented to extract the gait trait from associated biomechanical activity and differentiates the lower limb movement patterns from other body areas. Initially, a 2D postural model of human gait is presented from IR-UWB sensing phenomena employing spherical co-ordinate and trigonometry where only two dimensions such as, distance from radar and height of reflection have been determined. There are five pivotal gait parameters; step frequency, cadence, step length, walking speed, total covered distance, and body orientation which have all been measured employing radar principles and short term Fourier transformation (STFT). Subsequently, the proposed gait identification and parameter characterization has been analysed, tested and validated against popularly accepted smartphone applications with resulting variations of less than 5%. Subsequently, the spherical trigonometric model has been elevated to a 3D postural model where the prototype can determine width of motion, distance from radar, and height of reflection. Vector algebra has been incorporated with this 3D model to measure knee angles and hip angles from the extension and flexion of lower limbs to understand the gait behavior throughout the entire range of bipedal locomotion. Simultaneously, the Microsoft Kinect Xbox One has been employed during the experiment to assist in the validation process. The same vector mathematics have been implemented to the skeleton data obtained from Kinect to determine both the hip and knee angles. The outcomes have been compared by statistical graphical approach Bland and Altman (B&A) analysis. Further, the changes of knee angles obtained from the normal gaits have been used to train popular SMLs such as, k-nearest neighbour (kNN) and support vector machines (SVM). The trained model has subsequently been tested with the new data (knee angles extracted from both normal and abnormal gait) to assess the prediction ability of gait abnormality recognition. The outcomes have been validated through standard and wellknown statistical performance metrics with promising results found. The outcomes prove the acceptability of the proposed non-contact IR-UWB gait recognition to detect gait

    Improving cognition in school children and adolescents through exergames. A systematic review and practical guide

    Get PDF
    Recent studies and reviews have shown the positive effects of exergames (EXs) on physical activity (PA) and fitness in children and adolescents. Nevertheless, their effects on cognition have been scarcely explored, and no previous review has focussed on this relationship. The purpose of the research reported on here was to analyse the acute and chronic effects of the use of different EXs on the cognition of young people aged 6 to 18 years, to review potential confounders, and to elaborate a practical guide to using EXs in schools or extracurricular contexts. Studies were identified from 4 databases (Pubmed, SportDiscus, ProQuest and Web of Science) from January 2008 through January 2018. Thirteen studies met the inclusion criteria. All the studies showed a positive effect of EXs on cognition. The review showed an acute improvement effect on executive functions (EFs) (visual attention, mental processing, working memory, response inhibition, and motor planning) and chronic benefits on mathematical calculation, self-concept, classroom behaviour, and on parental and interpersonal relationships. Only 5 studies used confounders. EXs are an effective and motivating tool to improve cognition in young people aged 6 to 18 years. Didactic recommendations to use EXs in school or extracurricular contexts are provided in this article. Keywords: academic performance; active video games; acute and chronic effects; cognitive performance; executive functions;  exergames; learning; motivation; physical activity; physical educatio
    corecore