2,688 research outputs found

    Interference in Poisson Networks with Isotropically Distributed Nodes

    Full text link
    Practical wireless networks are finite, and hence non-stationary with nodes typically non-homo-geneously deployed over the area. This leads to a location-dependent performance and to boundary effects which are both often neglected in network modeling. In this work, interference in networks with nodes distributed according to an isotropic but not necessarily stationary Poisson point process (PPP) are studied. The resulting link performance is precisely characterized as a function of (i) an arbitrary receiver location and of (ii) an arbitrary isotropic shape of the spatial distribution. Closed-form expressions for the first moment and the Laplace transform of the interference are derived for the path loss exponents α=2\alpha=2 and α=4\alpha=4, and simple bounds are derived for other cases. The developed model is applied to practical problems in network analysis: for instance, the accuracy loss due to neglecting border effects is shown to be undesirably high within transition regions of certain deployment scenarios. Using a throughput metric not relying on the stationarity of the spatial node distribution, the spatial throughput locally around a given node is characterized.Comment: This work was presented in part at ISIT 201

    Interference and Throughput in Aloha-based Ad Hoc Networks with Isotropic Node Distribution

    Full text link
    We study the interference and outage statistics in a slotted Aloha ad hoc network, where the spatial distribution of nodes is non-stationary and isotropic. In such a network, outage probability and local throughput depend on both the particular location in the network and the shape of the spatial distribution. We derive in closed-form certain distributional properties of the interference that are important for analyzing wireless networks as a function of the location and the spatial shape. Our results focus on path loss exponents 2 and 4, the former case not being analyzable before due to the stationarity assumption of the spatial node distribution. We propose two metrics for measuring local throughput in non-stationary networks and discuss how our findings can be applied to both analysis and optimization.Comment: 5 pages, 3 figures. To appear in International Symposium on Information Theory (ISIT) 201

    Spatial networks with wireless applications

    Get PDF
    Many networks have nodes located in physical space, with links more common between closely spaced pairs of nodes. For example, the nodes could be wireless devices and links communication channels in a wireless mesh network. We describe recent work involving such networks, considering effects due to the geometry (convex,non-convex, and fractal), node distribution, distance-dependent link probability, mobility, directivity and interference.Comment: Review article- an amended version with a new title from the origina

    Interference and Outage in Clustered Wireless Ad Hoc Networks

    Full text link
    In the analysis of large random wireless networks, the underlying node distribution is almost ubiquitously assumed to be the homogeneous Poisson point process. In this paper, the node locations are assumed to form a Poisson clustered process on the plane. We derive the distributional properties of the interference and provide upper and lower bounds for its CCDF. We consider the probability of successful transmission in an interference limited channel when fading is modeled as Rayleigh. We provide a numerically integrable expression for the outage probability and closed-form upper and lower bounds.We show that when the transmitter-receiver distance is large, the success probability is greater than that of a Poisson arrangement. These results characterize the performance of the system under geographical or MAC-induced clustering. We obtain the maximum intensity of transmitting nodes for a given outage constraint, i.e., the transmission capacity (of this spatial arrangement) and show that it is equal to that of a Poisson arrangement of nodes. For the analysis, techniques from stochastic geometry are used, in particular the probability generating functional of Poisson cluster processes, the Palm characterization of Poisson cluster processes and the Campbell-Mecke theorem.Comment: Submitted to IEEE Transactions on Information Theor

    High-SIR Transmission Capacity of Wireless Networks with General Fading and Node Distribution

    Full text link
    In many wireless systems, interference is the main performance-limiting factor, and is primarily dictated by the locations of concurrent transmitters. In many earlier works, the locations of the transmitters is often modeled as a Poisson point process for analytical tractability. While analytically convenient, the PPP only accurately models networks whose nodes are placed independently and use ALOHA as the channel access protocol, which preserves the independence. Correlations between transmitter locations in non-Poisson networks, which model intelligent access protocols, makes the outage analysis extremely difficult. In this paper, we take an alternative approach and focus on an asymptotic regime where the density of interferers η\eta goes to 0. We prove for general node distributions and fading statistics that the success probability \p \sim 1-\gamma \eta^{\kappa} for η→0\eta \rightarrow 0, and provide values of γ\gamma and κ\kappa for a number of important special cases. We show that κ\kappa is lower bounded by 1 and upper bounded by a value that depends on the path loss exponent and the fading. This new analytical framework is then used to characterize the transmission capacity of a very general class of networks, defined as the maximum spatial density of active links given an outage constraint.Comment: Submitted to IEEE Trans. Info Theory special issu

    Energy Consumption Of Visual Sensor Networks: Impact Of Spatio-Temporal Coverage

    Get PDF
    Wireless visual sensor networks (VSNs) are expected to play a major role in future IEEE 802.15.4 personal area networks (PAN) under recently-established collision-free medium access control (MAC) protocols, such as the IEEE 802.15.4e-2012 MAC. In such environments, the VSN energy consumption is affected by the number of camera sensors deployed (spatial coverage), as well as the number of captured video frames out of which each node processes and transmits data (temporal coverage). In this paper, we explore this aspect for uniformly-formed VSNs, i.e., networks comprising identical wireless visual sensor nodes connected to a collection node via a balanced cluster-tree topology, with each node producing independent identically-distributed bitstream sizes after processing the video frames captured within each network activation interval. We derive analytic results for the energy-optimal spatio-temporal coverage parameters of such VSNs under a-priori known bounds for the number of frames to process per sensor and the number of nodes to deploy within each tier of the VSN. Our results are parametric to the probability density function characterizing the bitstream size produced by each node and the energy consumption rates of the system of interest. Experimental results reveal that our analytic results are always within 7% of the energy consumption measurements for a wide range of settings. In addition, results obtained via a multimedia subsystem show that the optimal spatio-temporal settings derived by the proposed framework allow for substantial reduction of energy consumption in comparison to ad-hoc settings. As such, our analytic modeling is useful for early-stage studies of possible VSN deployments under collision-free MAC protocols prior to costly and time-consuming experiments in the field.Comment: to appear in IEEE Transactions on Circuits and Systems for Video Technology, 201
    • …
    corecore