131 research outputs found

    Capacity bounds for dense massive MIMO in a line-of-sight propagation environment

    Get PDF
    The use of large-scale antenna arrays grants considerable benefits in energy and spectral efficiency to wireless systems due to spatial resolution and array gain techniques. By assuming a dominant line-of-sight environment in a massive multiple-input multiple-output scenario, we derive analytical expressions for the sum-capacity. Then, we show that convenient simplifications on the sum-capacity expressions are possible when working at low and high signal-to-noise ratio regimes. Furthermore, in the case of low and high signal-to-noise ratio regimes, it is demonstrated that the Gamma probability density function can approximate the probability density function of the instantaneous channel sum-capacity as the number of served devices and base station antennas grows, respectively. A second important demonstration presented in this work is that a Gamma probability density function can also be used to approximate the probability density function of the summation of the channel's singular values as the number of devices increases. Finally, it is important to highlight that the presented framework is useful for a massive number of Internet of Things devices as we show that the transmit power of each device can be made inversely proportional to the number of base station antennas.20

    Enabling Technologies for 5G and Beyond: Bridging the Gap between Vision and Reality

    Get PDF
    It is common knowledge that the fifth generation (5G) of cellular networks will come with drastic transformation in the cellular systems capabilities and will redefine mobile services. 5G (and beyond) systems will be used for human interaction, in addition to person-to-machine and machine-to-machine communications, i.e., every-thing is connected to every-thing. These features will open a whole line of new business opportunities and contribute to the development of the society in many different ways, including developing and building smart cities, enhancing remote health care services, to name a few. However, such services come with an unprecedented growth of mobile traffic, which will lead to heavy challenges and requirements that have not been experienced before. Indeed, the new generations of cellular systems are required to support ultra-low latency services (less than one millisecond), and provide hundred times more data rate and connectivity, all compared to previous generations such as 4G. Moreover, they are expected to be highly secure due to the sensitivity of the transmitted information. Researchers from both academia and industry have been concerting significant efforts to develop new technologies that aim at enabling the new generation of cellular systems (5G and beyond) to realize their potential. Much emphasis has been put on finding new technologies that enhance the radio access network (RAN) capabilities as RAN is considered to be the bottleneck of cellular networks. Striking a balance between performance and cost has been at the center of the efforts that led to the newly developed technologies, which include non-orthogonal multiple access (NOMA), millimeter wave (mmWave) technology, self-organizing network (SON) and massive multiple-input multiple-output (MIMO). Moreover, physical layer security (PLS) has been praised for being a potential candidate for enforcing transmission security when combined with cryptography techniques. Although the main concepts of the aforementioned RAN key enabling technologies have been well defined, there are discrepancies between their intended (i.e., vision) performance and the achieved one. In fact, there is still much to do to bridge the gap between what has been promised by such technologies in terms of performance and what they might be able to achieve in real-life scenarios. This motivates us to identify the main reasons behind the aforementioned gaps and try to find ways to reduce such gaps. We first focus on NOMA where the main drawback of existing solutions is related to their poor performance in terms of spectral efficiency and connectivity. Another major drawback of existing NOMA solutions is that transmission rate per user decreases slightly with the number of users, which is a serious issue since future networks are expected to provide high connectivity. To this end, we develop NOMA solutions that could provide three times the achievable rate of existing solutions while maintaining a constant transmission rate per user regardless of the number of connected users. We then investigate the challenges facing mmWave transmissions. It has been demonstrated that such technology is highly sensitive to blockage, which limits its range of communication. To overcome this obstacle, we develop a beam-codebook based analog beam-steering scheme that achieves near maximum beamforming gain performance. The proposed technique has been tested and verified by real-life measurements performed at Bell Labs. Another line of research pursued in this thesis is investigating challenges pertaining to SON. It is known that radio access network self-planning is the most complex and sensitive task due to its impact on the cost of network deployment, etc., capital expenditure (CAPEX). To tackle this issue, we propose a comprehensive self-planning solution that provides all the planning parameters at once while guaranteeing that the system is optimally planned. The proposed scheme is compared to existing solutions and its superiority is demonstrated. We finally consider the communication secrecy problem and investigated the potential of employing PLS. Most of the existing PLS schemes are based on unrealistic assumptions, most notably is the assumption of having full knowledge about the whereabouts of the eavesdroppers. To solve this problem, we introduce a radically novel nonlinear precoding technique and a coding strategy that together allow to establish secure communication without any knowledge about the eavesdroppers. Moreover, we prove that it is possible to secure communications while achieving near transmitter-receiver channel capacity (the maximum theoretical rate)

    Integrated Sensing and Communications for 3D Object Imaging via Bilinear Inference

    Full text link
    We consider an uplink integrated sensing and communications (ISAC) scenario where the detection of data symbols from multiple user equipment (UEs) occurs simultaneously with a three-dimensional (3D) estimation of the environment, extracted from the scattering features present in the channel state information (CSI) and utilizing the same physical layer communications air interface, as opposed to radar technologies. By exploiting a discrete (voxelated) representation of the environment, two novel ISAC schemes are derived with purpose-built message passing (MP) rules for the joint estimation of data symbols and status (filled/empty) of the discretized environment. The first relies on a modular feedback structure in which the data symbols and the environment are estimated alternately, whereas the second leverages a bilinear inference framework to estimate both variables concurrently. Both contributed methods are shown via simulations to outperform the state-of-the-art (SotA) in accurately recovering the transmitted data as well as the 3D image of the environment. An analysis of the computational complexities of the proposed methods reveals distinct advantages of each scheme, namely, that the bilinear solution exhibits a superior robustness to short pilots and channel blockages, while the alternating solution offers lower complexity with large number of UEs and superior performance in ideal conditions

    Measurements-Based Channel Models for Indoor LiFi Systems

    Get PDF
    Light-fidelity (LiFi) is a fully-networked bidirectional optical wireless communication (OWC) that is considered a promising solution for high-speed indoor connectivity. Unlike in conventional radio frequency wireless systems, the OWC channel is not isotropic, meaning that the device orientation affects the channel gain significantly. However, due to the lack of proper channel models for LiFi systems, many studies have assumed that the receiver is vertically upward and randomly located within the coverage area, which is not a realistic assumption from a practical point of view. In this paper, novel realistic and measurement-based channel models for indoor LiFi systems are proposed. Precisely, the statistics of the channel gain are derived for the case of randomly oriented stationary and mobile LiFi receivers. For stationary users, two channel models are proposed, namely, the modified truncated Laplace (MTL) model and the modified Beta (MB) model. For LiFi users, two channel models are proposed, namely, the sum of modified truncated Gaussian (SMTG) model and the sum of modified Beta (SMB) model. Based on the derived models, the impact of random orientation and spatial distribution of LiFi users is investigated, where we show that the aforementioned factors can strongly affect the channel gain and system performance

    Machine Learning Classifier Approach with Gaussian Process, Ensemble boosted Trees, SVM, and Linear Regression for 5G Signal Coverage Mapping

    Get PDF
    This article offers a thorough analysis of the machine learning classifiers approaches for the collected Received Signal Strength Indicator (RSSI) samples which can be applied in predicting propagation loss, used for network planning to achieve maximum coverage. We estimated the RMSE of a machine learning classifier on multivariate RSSI data collected from the cluster of 6 Base Transceiver Stations (BTS) across a hilly terrain of Uttarakhand-India. Variable attributes comprise topology, environment, and forest canopy. Four machine learning classifiers have been investigated to identify the classifier with the least RMSE: Gaussian Process, Ensemble Boosted Tree, SVM, and Linear Regression. Gaussian Process showed the lowest RMSE, R- Squared, MSE, and MAE of 1.96, 0.98, 3.8774, and 1.3202 respectively as compared to other classifiers

    Dynamic Spectrum Sharing in Cognitive Radio and Device-to-Device Systems

    Get PDF
    abstract: Cognitive radio (CR) and device-to-device (D2D) systems are two promising dynamic spectrum access schemes in wireless communication systems to provide improved quality-of-service, and efficient spectrum utilization. This dissertation shows that both CR and D2D systems benefit from properly designed cooperation scheme. In underlay CR systems, where secondary users (SUs) transmit simultaneously with primary users (PUs), reliable communication is by all means guaranteed for PUs, which likely deteriorates SUs’ performance. To overcome this issue, cooperation exclusively among SUs is achieved through multi-user diversity (MUD), where each SU is subject to an instantaneous interference constraint at the primary receiver. Therefore, the active number of SUs satisfying this constraint is random. Under different user distributions with the same mean number of SUs, the stochastic ordering of SU performance metrics including bit error rate (BER), outage probability, and ergodic capacity are made possible even without observing closed form expressions. Furthermore, a cooperation is assumed between primary and secondary networks, where those SUs exceeding the interference constraint facilitate PU’s transmission by relaying its signal. A fundamental performance trade-off between primary and secondary networks is observed, and it is illustrated that the proposed scheme outperforms non-cooperative underlay CR systems in the sense of system overall BER and sum achievable rate. Similar to conventional cellular networks, CR systems suffer from an overloaded receiver having to manage signals from a large number of users. To address this issue, D2D communications has been proposed, where direct transmission links are established between users in close proximity to offload the system traffic. Several new cooperative spectrum access policies are proposed allowing coexistence of multiple D2D pairs in order to improve the spectral efficiency. Despite the additional interference, it is shown that both the cellular user’s (CU) and the individual D2D user's achievable rates can be improved simultaneously when the number of D2D pairs is below a certain threshold, resulting in a significant multiplexing gain in the sense of D2D sum rate. This threshold is quantified for different policies using second order approximations for the average achievable rates for both the CU and the individual D2D user.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Towards versatile access networks (Chapter 3)

    Get PDF
    Compared to its previous generations, the 5th generation (5G) cellular network features an additional type of densification, i.e., a large number of active antennas per access point (AP) can be deployed. This technique is known as massive multipleinput multiple-output (mMIMO) [1]. Meanwhile, multiple-input multiple-output (MIMO) evolution, e.g., in channel state information (CSI) enhancement, and also on the study of a larger number of orthogonal demodulation reference signal (DMRS) ports for MU-MIMO, was one of the Release 18 of 3rd generation partnership project (3GPP Rel-18) work item. This release (3GPP Rel-18) package approval, in the fourth quarter of 2021, marked the start of the 5G Advanced evolution in 3GPP. The other items in 3GPP Rel-18 are to study and add functionality in the areas of network energy savings, coverage, mobility support, multicast broadcast services, and positionin

    Performance Evaluation and Enhancement in 5G Networks : A Stochastic Geometry Approach

    Get PDF
    PhDThe deployment of heterogeneous networks (HetNets), in which low power nodes (LPNs) and high power nodes (HPNs) coexist, has become a promising solution for extending coverage and increasing capacity in wireless networks. Meanwhile, several advanced technologies such as massive multi-input multi-output (MIMO), cloud radio access networks (C-RAN) and device-to-device (D2D) communications have been proposed as competent candidates for supporting the next generation (5G) network. Since single technology cannot solely achieve the envisioned 5G requirements, the e ect of integrating multiple technologies in one system is worth to be investigated. In this thesis, a thoroughly theoretical analysis is conducted to evaluate the network performance in di erent scenarios, where two or more 5G techniques are employed. First, the downlink performance of massive MIMO enabled HetNets is fully evaluated. The exact and asymptotic expressions for the probability of a user being associated with a macro cell or a small cell are presented. The analytical expressions for the spectrum e ciency (SE) and energy e ciency (EE) in the K-tier network are also derived. The analysis reveals that the implementation of massive MIMO in the macro cell can considerably improve the network performance and decrease the demands for small cells in HetNets, which simpli es the network deployment. Then, the downlink performance of a massive MIMO enabled heterogeneous C-RAN is investigated. The exact expressions for the SE and EE of the remote radio heads (RRHs) tier and a tractable approximation approach for evaluating the SE and EE of the macrocell tier are obtained. Numerical results collaborate the analysis and prove that massive MIMO with dense deployment of RRHs can signi cantly enhance the performance of heterogeneous C-RAN theoretically. Next, the uplink performance of massive MIMO enabled HetNets is exploited with interference management via derived SE and EE expressions. The numerical results show that the uplink performance in the massive MIMO macrocells can be signi cantly improved through uplink power control in the small cells, while more uplink transmissions in the macrocells have mild adverse e ect on the uplink performance of the small cells. In addition, the SE and EE of the massive MIMO macrocells with heavier load can be improved by expanding the small cell range. Lastly, the uplink performance of the D2D underlaid massive MIMO network is investigated and a novel D2D power control scheme is proposed. The average uplink achievable SE and EE expressions for the cellular and D2D are derived and results demonstrate that the proposed power control can e ciently mitigate the interference from the D2D. Moreover, the D2D scale properties are obtained, which provide the su cient conditions for achieving the anticipated SE. The results demonstrate that there exists the optimal D2D density for maximizing the area SE of D2D tier. In addition, the achievable EE of a cellular user can be comparable to that of a D2D user. Stochastic geometry is applied to model all of the systems mentioned above. Monte Carlo simulations are also developed and conducted to validate the derived expressions and the theoretical analysis

    Design and Performance Analysis of Next Generation Heterogeneous Cellular Networks for the Internet of Things

    Get PDF
    The Internet of Things (IoT) is a system of inter-connected computing devices, objects and mechanical and digital machines, and the communications between these devices/objects and other Internet-enabled systems. Scalable, reliable, and energy-efficient IoT connectivity will bring huge benefits to the society, especially in transportation, connected self-driving vehicles, healthcare, education, smart cities, and smart industries. The objective of this dissertation is to model and analyze the performance of large-scale heterogeneous two-tier IoT cellular networks, and offer design insights to maximize their performance. Using stochastic geometry, we develop realistic yet tractable models to study the performance of such networks. In particular, we propose solutions to the following research problems: -We propose a novel analytical model to estimate the mean uplink device data rate utility function under both spectrum allocation schemes, full spectrum reuse (FSR) and orthogonal spectrum partition (OSP), for uplink two-hop IoT networks. We develop constraint gradient ascent optimization algorithms to obtain the optimal aggregator association bias (for the FSR scheme) and the optimal joint spectrum partition ratio and optimal aggregator association bias (for the OSP scheme). -We study the performance of two-tier IoT cellular networks in which one tier operates in the traditional sub-6GHz spectrum and the other, in the millimeter wave (mm-wave) spectrum. In particular, we characterize the meta distributions of the downlink signal-to-interference ratio (sub-6GHz spectrum), the signal-to-noise ratio (mm-wave spectrum) and the data rate of a typical device in such a hybrid spectrum network. Finally, we characterize the meta distributions of the SIR/SNR and data rate of a typical device by substituting the cumulative moment of the CSP of a user device into the Gil-Pelaez inversion theorem. -We propose to split the control plane (C-plane) and user plane (U-plane) as a potential solution to harvest densification gain in heterogeneous two-tier networks while minimizing the handover rate and network control overhead. We develop a tractable mobility-aware model for a two-tier downlink cellular network with high density small cells and a C-plane/U-plane split architecture. The developed model is then used to quantify effect of mobility on the foreseen densification gain with and without C-plane/U-plane splitting
    • …
    corecore