1,558 research outputs found

    Coordination and Bargaining over the Gaussian Interference Channel

    Full text link
    This work considers coordination and bargaining between two selfish users over a Gaussian interference channel using game theory. The usual information theoretic approach assumes full cooperation among users for codebook and rate selection. In the scenario investigated here, each selfish user is willing to coordinate its actions only when an incentive exists and benefits of cooperation are fairly allocated. To improve communication rates, the two users are allowed to negotiate for the use of a simple Han-Kobayashi type scheme with fixed power split and conditions for which users have incentives to cooperate are identified. The Nash bargaining solution (NBS) is used as a tool to get fair information rates. The operating point is obtained as a result of an optimization problem and compared with a TDM-based one in the literature.Comment: 5 pages, 4 figures, to appear in Proceedings of IEEE ISIT201

    Review on Radio Resource Allocation Optimization in LTE/LTE-Advanced using Game Theory

    Get PDF
    Recently, there has been a growing trend toward ap-plying game theory (GT) to various engineering fields in order to solve optimization problems with different competing entities/con-tributors/players. Researches in the fourth generation (4G) wireless network field also exploited this advanced theory to overcome long term evolution (LTE) challenges such as resource allocation, which is one of the most important research topics. In fact, an efficient de-sign of resource allocation schemes is the key to higher performance. However, the standard does not specify the optimization approach to execute the radio resource management and therefore it was left open for studies. This paper presents a survey of the existing game theory based solution for 4G-LTE radio resource allocation problem and its optimization

    Coalitional Games in MISO Interference Channels: Epsilon-Core and Coalition Structure Stable Set

    Full text link
    The multiple-input single-output interference channel is considered. Each transmitter is assumed to know the channels between itself and all receivers perfectly and the receivers are assumed to treat interference as additive noise. In this setting, noncooperative transmission does not take into account the interference generated at other receivers which generally leads to inefficient performance of the links. To improve this situation, we study cooperation between the links using coalitional games. The players (links) in a coalition either perform zero forcing transmission or Wiener filter precoding to each other. The ϵ\epsilon-core is a solution concept for coalitional games which takes into account the overhead required in coalition deviation. We provide necessary and sufficient conditions for the strong and weak ϵ\epsilon-core of our coalitional game not to be empty with zero forcing transmission. Since, the ϵ\epsilon-core only considers the possibility of joint cooperation of all links, we study coalitional games in partition form in which several distinct coalitions can form. We propose a polynomial time distributed coalition formation algorithm based on coalition merging and prove that its solution lies in the coalition structure stable set of our coalition formation game. Simulation results reveal the cooperation gains for different coalition formation complexities and deviation overhead models.Comment: to appear in IEEE Transactions on Signal Processing, 14 pages, 14 figures, 3 table
    corecore