1,065 research outputs found

    Enhanced content update dissemination through D2D in 5G cellular networks

    Get PDF
    Opportunistic traffic offloading has been proposed to tackle overload problems in cellular networks. However, existing proposals only address device-to-device-based offloading techniques with deadline-based data propagation, and neglect content injection procedures. In contrast, we tackle the offloading issue from another perspective: the base station interference coordination problem during content injection. In particular, we focus on dissemination of contents, and aim at the minimization of the total transmission time spent by base stations to inject the contents into the network. We leverage the almost blank subframe technique to keep under control the intercell interference in such a process. We formulate an optimization problem, prove that it is NP-hard and NP-complete, and propose a near-optimal heuristic to solve it. Our algorithm substantially outperforms classical intercell interference approaches, as we evaluate through the simulation of LTE-A networks.This work has been initially supported by the FP7 CROWD Project under Grant 318115 and later on followed up by the H2020 5G NORMA Project under Grant 671584. The work of V. Mancuso was supported by the Ramon y Cajal Grant from the Spanish Ministry of Economy and Competitiveness under Grant RYC-2014-01335

    Game-theoretic Resource Allocation Methods for Device-to-Device (D2D) Communication

    Full text link
    Device-to-device (D2D) communication underlaying cellular networks allows mobile devices such as smartphones and tablets to use the licensed spectrum allocated to cellular services for direct peer-to-peer transmission. D2D communication can use either one-hop transmission (i.e., in D2D direct communication) or multi-hop cluster-based transmission (i.e., in D2D local area networks). The D2D devices can compete or cooperate with each other to reuse the radio resources in D2D networks. Therefore, resource allocation and access for D2D communication can be treated as games. The theories behind these games provide a variety of mathematical tools to effectively model and analyze the individual or group behaviors of D2D users. In addition, game models can provide distributed solutions to the resource allocation problems for D2D communication. The aim of this article is to demonstrate the applications of game-theoretic models to study the radio resource allocation issues in D2D communication. The article also outlines several key open research directions.Comment: Accepted. IEEE Wireless Comms Mag. 201

    Enhancements in spectrum management techniques for heterogeneous 5G future networks

    Get PDF
    Mención Internacional en el título de doctorIn the last decade, cellular networks are undergoing with a radical change in their basic design foundations. The huge increase in traffic demand requires a novel design of future cellular networks. Driven by this increase, a network densification phenomena is occurring thereby, which in turns requires to devise efficient and reliable mechanisms to deal with the interference problems resulting from such densification. The architecture and mechanisms resulting from such drastic re-design of the network are commonly referred under the term ’5G network’. In this context, this work unveils that current networking solutions are no longer sufficient to (i) provide the required network spectral efficiency, and (ii) guarantee the desired level of quality of experience from the user side. In order to address this problem, in this thesis we propose a novel SDN-like framework that incorporates the needed mechanisms to improve spectral efficiency while delivering the desired quality of experience to users. In particular, our architecture includes the following two approaches: Our first approach addresses the intercell interference issues resulting from high network densification. To this end, we propose novel mechanisms to mitigate the inter-cell interference problem. We address the design of such schemes from two angles: (i) a controller-aided mechanism, which gathers all the information of the network at a centralized point and, based on this information, optimally schedules the transmission from different users, and (ii) a semi-distributed mechanism, which limits the signaling overhead involved in sending the information to a centralized point while providing close to optimal performance. One of the key novelties of our scheduling algorithms is that they are based on the Almost Blank SubFrame (ABSF) scheme; indeed, this scheme has been standardized only recently and very little work has addressed the design of algorithm to use it. Our second approach addresses spectral efficiency from a complementary angle: cellular traffic offloading for content update applications. This approach leverages high user mobility to offload the cellular downlink traffic through a device-to-device communication. In this context, we propose an adaptive algorithm to decide how to optimally transmit content to base stations in order to maximize traffic offload. By relying on control theory techniques, our approach delivers near optimally performance. A third key contribution of this thesis is the design of a solution that combines the above two approaches. In particular, our solution takes into account that traffic offload is taking place in the network and addresses the design of an optimal scheduling algorithm that leverages on the Almost Blank SubFrame (ABSF) scheme. Indeed, the combination of these kind of approaches has received little attention from the literature. The feasibility and performance of the approaches described above are thoroughly evaluated and compared against state-of-the-art solutions through an exhaustive simulation campaign. Our results show that the proposed approaches outperform conventional eICIC techniques as well as standard offloading mechanisms, respectively, and confirm their feasibility in terms of overhead and computational complexity. To the best of our knowledge, this thesis is the first attempt to design an unified framework which is able to optimally perform offloading for content-update distribution applications while boosting the network performance in terms of spectral efficiency.Programa Oficial de Doctorado en Ingeniería TelemáticaPresidente: Pablo Serrano Yáñez-Mingot.- Secretario: Juan José Alacaraz Espín.- Vocal: Matteo Cesan

    View on 5G Architecture: Version 2.0

    Get PDF
    The 5G Architecture Working Group as part of the 5GPPP Initiative is looking at capturing novel trends and key technological enablers for the realization of the 5G architecture. It also targets at presenting in a harmonized way the architectural concepts developed in various projects and initiatives (not limited to 5GPPP projects only) so as to provide a consolidated view on the technical directions for the architecture design in the 5G era. The first version of the white paper was released in July 2016, which captured novel trends and key technological enablers for the realization of the 5G architecture vision along with harmonized architectural concepts from 5GPPP Phase 1 projects and initiatives. Capitalizing on the architectural vision and framework set by the first version of the white paper, this Version 2.0 of the white paper presents the latest findings and analyses with a particular focus on the concept evaluations, and accordingly it presents the consolidated overall architecture design

    Recent Advances in Cellular D2D Communications

    Get PDF
    Device-to-device (D2D) communications have attracted a great deal of attention from researchers in recent years. It is a promising technique for offloading local traffic from cellular base stations by allowing local devices, in physical proximity, to communicate directly with each other. Furthermore, through relaying, D2D is also a promising approach to enhancing service coverage at cell edges or in black spots. However, there are many challenges to realizing the full benefits of D2D. For one, minimizing the interference between legacy cellular and D2D users operating in underlay mode is still an active research issue. With the 5th generation (5G) communication systems expected to be the main data carrier for the Internet-of-Things (IoT) paradigm, the potential role of D2D and its scalability to support massive IoT devices and their machine-centric (as opposed to human-centric) communications need to be investigated. New challenges have also arisen from new enabling technologies for D2D communications, such as non-orthogonal multiple access (NOMA) and blockchain technologies, which call for new solutions to be proposed. This edited book presents a collection of ten chapters, including one review and nine original research works on addressing many of the aforementioned challenges and beyond

    Distributed Resource Allocation and Performance Analysis in 5G Wireless Cellular Networks

    Get PDF
    This thesis focuses on the study of Heterogeneous Networks (HetNets), Device-to-device (D2D) communication networks, and unmanned aerial vehicle (UAV) networks in fifth generation wireless communication (5G) systems. HetNets that consist of macro-cells and small-cells have become increasingly popular in current wireless networks and 5G systems to meet the exponentially growing demand for higher data rates. Compared to conventional homogeneous cellular networks, the disparity of transmission power among different types of base stations (BSs), the relatively random deployment of SBSs, and the densifying networks, bring new challenges, such as the imbalanced load between macro and small cells and severe inter-cell interference. In the other hand, with the skyrocketing number of tablets and smart phones, the notion of caching popular content in the storage of BSs and users' devices is proposed to reduce duplicated wireless transmissions. To fulfill multi-fold communication requirements from humans, machine, and things, the 5G systems which include D2D communications, UAV communications, and so on, can improve the network performance. Among them, the performance analyses of these emerging technologies are attracting much attention and should be investigated first. This thesis focuses on these hot issues and emerging technologies in 5G systems, analyzing the network performance and conducting the allocation of available resources, such as serving BSs, spectrum resources, and storage resources. Specifically, three main research focuses are included in the thesis. The first focus of this thesis is the impact of the BS idle mode capacity (IMC) on the network performance of multi-tier and dense HCNs with both line-of-sight (LoS) and non-line-of-sight (NLoS) transmissions. I consider a more practical set-up with a finite number of UEs in the analysis. Moreover, the SBSs apply a positive power bias in the cell association procedure, so that macrocell UEs are actively encouraged to use the more lightly loaded SBSs. In addition, to address the severe interference that these cell range expanded UEs may suffer, the MBSs apply enhanced inter-cell interference coordination (eICIC), in the form of almost blank subframe (ABS) mechanism. For this model, I derive the coverage probability and the rate of a typical UE in the whole network or a certain tier. The impact of the IMC on the performance of the network is shown to be significant. In particular, it is important to note that there will be a surplus of BSs when the BS density exceeds the UE density, and thus a large number of BSs switch off. As a result, the overall coverage probability, as well as the area spectral efficiency (ASE), will continuously increase with the BS density, addressing the network outage that occurs when all BSs are active and the interference becomes LoS dominated. Finally, the optimal ABS factors are investigated in different BS density regions. One of major findings is that MBSs should give up all resources in favor of the SBSs when the small cell networks go ultra-dense. This reinforces the need for orthogonal deployments, shedding new light on the design and deployment of the future 5G dense HCNs. The second focus of this thesis is the content caching in D2D communication networks. In practical deployment, D2D content caching has its own problem that is not all of the user devices are willing to share the content with others due to numerous concerns such as security, battery life, and social relationship. To solve this problem, I consider the factor of social relationship in the deployment of D2D content caching. First, I apply stochastic geometry theory to derive an analytical expression of downloading performance for the D2D caching network. Specifically, a social relationship model with respect to the physical distance is adopted in the analysis to obtain the average downloading delay performance using random and deterministic caching strategies. Second, to achieve a better performance in more practical and specific scenarios, I develop a socially aware distributed caching strategy based on a decentralized learning automaton, to optimize the cache placement operation in D2D networks. Different from the existing caching schemes, the proposed algorithm not only considers the file request probability and the closeness of devices as measured by their physical distance, but also takes into account the social relationship between D2D users. The simulation results show that the proposed algorithm can converge quickly and outperforms the random and deterministic caching strategies. With these results, the work sheds insights on the design of D2D caching in the practical deployment of 5G networks. The third focus of this thesis is the performance analysis for practical UAV-enabled networks. By considering both LoS and NLoS transmissions between aerial BSs and ground users, the coverage probability and the ASE are derived. Considering that there is no consensus on the path loss model for studying UAVs in the literature, in this focus, three path loss models, i.e., high-altitude model, low-altitude model, and ultra-low-altitude model, are investigated and compared. Moreover, the lower bound of the network performance is obtained assuming that UAVs are hovering randomly according to homogeneous Poisson point process (HPPP), while the upper bound is derived assuming that UAVs can instantaneously move to the positions directly overhead ground users. From the analytical and simulation results for a practical UAV height of 50 meters, I find that the network performance of the high-altitude model and the low-altitude model exhibit similar trends, while that of the ultra-low-altitude model deviates significantly from the above two models. In addition, the optimal density of UAVs to maximize the coverage probability performance has also been investigated

    Infraestrutura de beira de estrada para apoio a sistemas cooperativos e inteligentes de transportes

    Get PDF
    The growing need of mobility along with the evolution of the automotive industry and the massification of the personal vehicle amplifies some of the road-related problems such as safety and traffic congestion. To mitigate such issues, the evolution towards cooperative communicating technologies and autonomous systems is considered a solution to overcome the human physical limitations and the limited perception horizon of on-board sensors. Short-range vehicular communications such as Vehicle-to-Vehicle or Vehicle-to-Infrastructure (ETSI ITS-G5) in conjunction with long-range cellular communications (LTE,5G) and standardized messages, emerge as viable solutions to amplify the benefits that standalone technologies can bring to the road environment, by covering a wide array of applications and use cases. In compliance with the standardization work from European Telecommunications Standards Institute (ETSI), this dissertation describes the implementation of the collective perception service in a real road infrastructure to assist the maneuvers of autonomous vehicles and provide information to a central road operator. This work is focused on building standardized collective perception messages (CPM) by retrieving information from traffic classification radars (installed in the PASMO project) for local dissemination using ETSI ITS-G5 radio technology and creating a redundant communication channel between the road infrastructure and a central traffic control centre, located at the Instituto de Telecomunicações - Aveiro, taking advantage of cellular, point-to-point radio links and optical fiber communications. The output of the messages are shown to the user by a mobile application. The service is further improved by building an algorithm for optimizing the message dissemination to improve channel efficiency in more demanding scenarios. The results of the experimental tests showed that the time delay between the production event of the collective perception message and the reception by other ITS stations is within the boundaries defined by ETSI standards. Moreover, the algorithm for message dissemination also shows to increase radio channel efficiency by limiting the number of objects disseminated by CPM messages. The collective perception service developed and the road infrastructure are therefore, a valuable asset to provide useful information for improving road safety and fostering the deployment of intelligent cooperative transportation systems.A crescente necessidade de mobilidade em paralelo com a evolução da indústria automóvel e com a massificação do uso de meios de transportes pessoais, têm vindo a amplificar alguns problemas dos transportes rodoviários, tais como a segurança e o congestionamento do tráfego. Para mitigar estas questões, a evolução das tecnologias de comunicação cooperativas e dos sistemas autónomos é vista como uma potencial solução para ultrapassar limitações dos condutores e do horizonte de perceção dos sensores veículares. Comunicações de curto alcance, tais como Veículo-a-Veículo ou Veículo-a-Infrastrutura (ETSI ITS-G5), em conjunto com comunicações móveis de longo alcance (LTE,5G) e mensagens padrão, emergem como soluções viáveis para amplificar todos os beneficios que tecnologias independentes podem trazer para o ambiente rodoviário, cobrindo um grande leque de aplicações e casos de uso da estrada. Em conformidade com o trabalho de padronização da European Telecommunications Standards Institute, esta dissertação descreve a implementação do serviço de perceção coletiva, numa infrastrutura rodoviária real, para suporte a manobras de veículos autónomos e para fornecer informações aos operadores de estradas. Este trabalho foca-se na construção de mensagens de perceção coletiva a partir de informação gerada por radares de classificação de tráfego (instalados no âmbito do projeto PASMO) para disseminação local usando a tecnologia rádio ETSI ITS-G5 e criando um canal de comunicação redundante entre a infraestrutura rodóviaria e um centro de controlo de tráfego localizado no Instituto de Telecomunicações - Aveiro, usando para isso: redes móveis, ligações rádio ponto a ponto e fibra ótica. O conteúdo destas messagens é mostrado ao utilizador através de uma aplicação móvel. O serviço é ainda melhorado, tendo-se para tal desenvolvido um algoritmo de otimização de disseminação das mensagens, tendo em vista melhorar a eficiência do canal de transmissão em cenários mais exigentes. Os resultados dos testes experimentais efetuados revelaram que o tempo de atraso entre o evento de produção de uma mensagem de perceção coletiva e a receção por outra estação ITS, usando comunicações ITS-G5, se encontra dentro dos limites definidos pelos padrões da ETSI. Além disso, o algoritmo para disseminação de mensagens também mostrou aumentar a eficiência do canal de rádio, limitando o número de objetos disseminados pelas mesmas. Assim, o serviço de perceção coletiva desenvolvido poderá ser uma ferramenta valiosa, contribuindo para o aumento da segurança rodóviaria e para a disseminação da utilização dos sistemas cooperativos de transporte inteligente.Mestrado em Engenharia Eletrónica e Telecomunicaçõe

    A survey on vehicular communication for cooperative truck platooning application

    Get PDF
    Platooning is an application where a group of vehicles move one after each other in close proximity, acting jointly as a single physical system. The scope of platooning is to improve safety, reduce fuel consumption, and increase road use efficiency. Even if conceived several decades ago as a concept, based on the new progress in automation and vehicular networking platooning has attracted particular attention in the latest years and is expected to become of common implementation in the next future, at least for trucks.The platoon system is the result of a combination of multiple disciplines, from transportation, to automation, to electronics, to telecommunications. In this survey, we consider the platooning, and more specifically the platooning of trucks, from the point of view of wireless communications. Wireless communications are indeed a key element, since they allow the information to propagate within the convoy with an almost negligible delay and really making all vehicles acting as one. Scope of this paper is to present a comprehensive survey on connected vehicles for the platooning application, starting with an overview of the projects that are driving the development of this technology, followed by a brief overview of the current and upcoming vehicular networking architecture and standards, by a review of the main open issues related to wireless communications applied to platooning, and a discussion of security threats and privacy concerns. The survey will conclude with a discussion of the main areas that we consider still open and that can drive future research directions.(c) 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
    corecore