422 research outputs found

    MIMO signal processing in offset-QAM based filter bank multicarrier systems

    Get PDF
    Next-generation communication systems have to comply with very strict requirements for increased flexibility in heterogeneous environments, high spectral efficiency, and agility of carrier aggregation. This fact motivates research in advanced multicarrier modulation (MCM) schemes, such as filter bank-based multicarrier (FBMC) modulation. This paper focuses on the offset quadrature amplitude modulation (OQAM)-based FBMC variant, known as FBMC/OQAM, which presents outstanding spectral efficiency and confinement in a number of channels and applications. Its special nature, however, generates a number of new signal processing challenges that are not present in other MCM schemes, notably, in orthogonal-frequency-division multiplexing (OFDM). In multiple-input multiple-output (MIMO) architectures, which are expected to play a primary role in future communication systems, these challenges are intensified, creating new interesting research problems and calling for new ideas and methods that are adapted to the particularities of the MIMO-FBMC/OQAM system. The goal of this paper is to focus on these signal processing problems and provide a concise yet comprehensive overview of the recent advances in this area. Open problems and associated directions for future research are also discussed.Peer ReviewedPostprint (author's final draft

    Soft-decision equalization techniques for frequency selective MIMO channels

    Get PDF
    Multi-input multi-output (MIMO) technology is an emerging solution for high data rate wireless communications. We develop soft-decision based equalization techniques for frequency selective MIMO channels in the quest for low-complexity equalizers with BER performance competitive to that of ML sequence detection. We first propose soft decision equalization (SDE), and demonstrate that decision feedback equalization (DFE) based on soft-decisions, expressed via the posterior probabilities associated with feedback symbols, is able to outperform hard-decision DFE, with a low computational cost that is polynomial in the number of symbols to be recovered, and linear in the signal constellation size. Building upon the probabilistic data association (PDA) multiuser detector, we present two new MIMO equalization solutions to handle the distinctive channel memory. With their low complexity, simple implementations, and impressive near-optimum performance offered by iterative soft-decision processing, the proposed SDE methods are attractive candidates to deliver efficient reception solutions to practical high-capacity MIMO systems. Motivated by the need for low-complexity receiver processing, we further present an alternative low-complexity soft-decision equalization approach for frequency selective MIMO communication systems. With the help of iterative processing, two detection and estimation schemes based on second-order statistics are harmoniously put together to yield a two-part receiver structure: local multiuser detection (MUD) using soft-decision Probabilistic Data Association (PDA) detection, and dynamic noise-interference tracking using Kalman filtering. The proposed Kalman-PDA detector performs local MUD within a sub-block of the received data instead of over the entire data set, to reduce the computational load. At the same time, all the inter-ference affecting the local sub-block, including both multiple access and inter-symbol interference, is properly modeled as the state vector of a linear system, and dynamically tracked by Kalman filtering. Two types of Kalman filters are designed, both of which are able to track an finite impulse response (FIR) MIMO channel of any memory length. The overall algorithms enjoy low complexity that is only polynomial in the number of information-bearing bits to be detected, regardless of the data block size. Furthermore, we introduce two optional performance-enhancing techniques: cross- layer automatic repeat request (ARQ) for uncoded systems and code-aided method for coded systems. We take Kalman-PDA as an example, and show via simulations that both techniques can render error performance that is better than Kalman-PDA alone and competitive to sphere decoding. At last, we consider the case that channel state information (CSI) is not perfectly known to the receiver, and present an iterative channel estimation algorithm. Simulations show that the performance of SDE with channel estimation approaches that of SDE with perfect CSI

    Orthogonal transmultiplexers : extensions to digital subscriber line (DSL) communications

    Get PDF
    An orthogonal transmultiplexer which unifies multirate filter bank theory and communications theory is investigated in this dissertation. Various extensions of the orthogonal transmultiplexer techniques have been made for digital subscriber line communication applications. It is shown that the theoretical performance bounds of single carrier modulation based transceivers and multicarrier modulation based transceivers are the same under the same operational conditions. Single carrier based transceiver systems such as Quadrature Amplitude Modulation (QAM) and Carrierless Amplitude and Phase (CAP) modulation scheme, multicarrier based transceiver systems such as Orthogonal Frequency Division Multiplexing (OFDM) or Discrete Multi Tone (DMT) and Discrete Subband (Wavelet) Multicarrier based transceiver (DSBMT) techniques are considered in this investigation. The performance of DMT and DSBMT based transceiver systems for a narrow band interference and their robustness are also investigated. It is shown that the performance of a DMT based transceiver system is quite sensitive to the location and strength of a single tone (narrow band) interference. The performance sensitivity is highlighted in this work. It is shown that an adaptive interference exciser can alleviate the sensitivity problem of a DMT based system. The improved spectral properties of DSBMT technique reduces the performance sensitivity for variations of a narrow band interference. It is shown that DSBMT technique outperforms DMT and has a more robust performance than the latter. The superior performance robustness is shown in this work. Optimal orthogonal basis design using cosine modulated multirate filter bank is discussed. An adaptive linear combiner at the output of analysis filter bank is implemented to eliminate the intersymbol and interchannel interferences. It is shown that DSBMT is the most suitable technique for a narrow band interference environment. A blind channel identification and optimal MMSE based equalizer employing a nonmaximally decimated filter bank precoder / postequalizer structure is proposed. The performance of blind channel identification scheme is shown not to be sensitive to the characteristics of unknown channel. The performance of the proposed optimal MMSE based equalizer is shown to be superior to the zero-forcing equalizer

    Unified Framework for Multicarrier and Multiple Access based on Generalized Frequency Division Multiplexing

    Get PDF
    The advancements in wireless communications are the key-enablers of new applications with stringent requirements in low-latency, ultra-reliability, high data rate, high mobility, and massive connectivity. Diverse types of devices, ranging from tiny sensors to vehicles, with different capabilities need to be connected under various channel conditions. Thus, modern connectivity and network techniques at all layers are essential to overcome these challenges. In particular, the physical layer (PHY) transmission is required to achieve certain link reliability, data rate, and latency. In modern digital communications systems, the transmission is performed by means of a digital signal processing module that derives analog hardware. The performance of the analog part is influenced by the quality of the hardware and the baseband signal denoted as waveform. In most of the modern systems such as fifth generation (5G) and WiFi, orthogonal frequency division multiplexing (OFDM) is adopted as a favorite waveform due to its low-complexity advantages in terms of signal processing. However, OFDM requires strict requirements on hardware quality. Many devices are equipped with simplified analog hardware to reduce the cost. In this case, OFDM does not work properly as a result of its high peak-to-average power ratio (PAPR) and sensitivity to synchronization errors. To tackle these problems, many waveforms design have been recently proposed in the literature. Some of these designs are modified versions of OFDM or based on conventional single subcarrier. Moreover, multicarrier frameworks, such as generalized frequency division multiplexing (GFDM), have been proposed to realize varieties of conventional waveforms. Furthermore, recent studies show the potential of using non-conventional waveforms for increasing the link reliability with affordable complexity. Based on that, flexible waveforms and transmission techniques are necessary to adapt the system for different hardware and channel constraints in order to fulfill the applications requirements while optimizing the resources. The objective of this thesis is to provide a holistic view of waveforms and the related multiple access (MA) techniques to enable efficient study and evaluation of different approaches. First, the wireless communications system is reviewed with specific focus on the impact of hardware impairments and the wireless channel on the waveform design. Then, generalized model of waveforms and MA are presented highlighting various special cases. Finally, this work introduces low-complexity architectures for hardware implementation of flexible waveforms. Integrating such designs with software-defined radio (SDR) contributes to the development of practical real-time flexible PHY.:1 Introduction 1.1 Baseband transmission model 1.2 History of multicarrier systems 1.3 The state-of-the-art waveforms 1.4 Prior works related to GFDM 1.5 Objective and contributions 2 Fundamentals of Wireless Communications 2.1 Wireless communications system 2.2 RF transceiver 2.2.1 Digital-analogue conversion 2.2.2 QAM modulation 2.2.3 Effective channel 2.2.4 Hardware impairments 2.3 Waveform aspects 2.3.1 Single-carrier waveform 2.3.2 Multicarrier waveform 2.3.3 MIMO-Waveforms 2.3.4 Waveform performance metrics 2.4 Wireless Channel 2.4.1 Line-of-sight propagation 2.4.2 Multi path and fading process 2.4.3 General baseband statistical channel model 2.4.4 MIMO channel 2.5 Summary 3 Generic Block-based Waveforms 3.1 Block-based waveform formulation 3.1.1 Variable-rate multicarrier 3.1.2 General block-based multicarrier model 3.2 Waveform processing techniques 3.2.1 Linear and circular filtering 3.2.2 Windowing 3.3 Structured representation 3.3.1 Modulator 3.3.2 Demodulator 3.3.3 MIMO Waveform processing 3.4 Detection 3.4.1 Maximum-likelihood detection 3.4.2 Linear detection 3.4.3 Iterative Detection 3.4.4 Numerical example and insights 3.5 Summary 4 Generic Multiple Access Schemes 57 4.1 Basic multiple access and multiplexing schemes 4.1.1 Infrastructure network system model 4.1.2 Duplex schemes 4.1.3 Common multiplexing and multiple access schemes 4.2 General multicarrier-based multiple access 4.2.1 Design with fixed set of pulses 4.2.2 Computational model 4.2.3 Asynchronous multiple access 4.3 Summary 5 Time-Frequency Analyses of Multicarrier 5.1 General time-frequency representation 5.1.1 Block representation 5.1.2 Relation to Zak transform 5.2 Time-frequency spreading 5.3 Time-frequency block in LTV channel 5.3.1 Subcarrier and subsymbol numerology 5.3.2 Processing based on the time-domain signal 5.3.3 Processing based on the frequency-domain signal 5.3.4 Unified signal model 5.4 summary 6 Generalized waveforms based on time-frequency shifts 6.1 General time-frequency shift 6.1.1 Time-frequency shift design 6.1.2 Relation between the shifted pulses 6.2 Time-frequency shift in Gabor frame 6.2.1 Conventional GFDM 6.3 GFDM modulation 6.3.1 Filter bank representation 6.3.2 Block representation 6.3.3 GFDM matrix structure 6.3.4 GFDM demodulator 6.3.5 Alternative interpretation of GFDM 6.3.6 Orthogonal modulation and GFDM spreading 6.4 Summary 7 Modulation Framework: Architectures and Applications 7.1 Modem architectures 7.1.1 General modulation matrix structure 7.1.2 Run-time flexibility 7.1.3 Generic GFDM-based architecture 7.1.4 Flexible parallel multiplications architecture 7.1.5 MIMO waveform architecture 7.2 Extended GFDM framework 7.2.1 Architectures complexity and flexibility analysis 7.2.2 Number of multiplications 7.2.3 Hardware analysis 7.3 Applications of the extended GFDM framework 7.3.1 Generalized FDMA 7.3.2 Enchantment of OFDM system 7.4 Summary 7 Conclusions and Future work

    Performance Analysis of a 5G Transceiver Implementation for Remote Areas Scenarios

    Full text link
    The fifth generation of mobile communication networks will support a large set of new services and applications. One important use case is the remote area coverage for broadband Internet access. This use case ha significant social and economic impact, since a considerable percentage of the global population living in low populated area does not have Internet access and the communication infrastructure in rural areas can be used to improve agribusiness productivity. The aim of this paper is to analyze the performance of a 5G for Remote Areas transceiver, implemented on field programmable gate array based hardware for real-time processing. This transceiver employs the latest digital communication techniques, such as generalized frequency division multiplexing waveform combined with 2 by 2 multiple-input multiple-output diversity scheme and polar channel coding. The performance of the prototype is evaluated regarding its out-of-band emissions and bit error rate under AWGN channel.Comment: Presented in 2018 European Conference on Networks and Communications (EuCNC),18-21 June, 2018, Ljubljana, Sloveni

    Solutions for New Terrestrial Broadcasting Systems Offering Simultaneously Stationary and Mobile Services

    Get PDF
    221 p.[EN]Since the first broadcasted TV signal was transmitted in the early decades of the past century, the television broadcasting industry has experienced a series of dramatic changes. Most recently, following the evolution from analogue to digital systems, the digital dividend has become one of the main concerns of the broadcasting industry. In fact, there are many international spectrum authorities reclaiming part of the broadcasting spectrum to satisfy the growing demand of other services, such as broadband wireless services, arguing that the TV services are not very spectrum-efficient. Apart from that, it must be taken into account that, even if up to now the mobile broadcasting has not been considered a major requirement, this will probably change in the near future. In fact, it is expected that the global mobile data traffic will increase 11-fold between 2014 and 2018, and what is more, over two thirds of the data traffic will be video stream by the end of that period. Therefore, the capability to receive HD services anywhere with a mobile device is going to be a mandatory requirement for any new generation broadcasting system. The main objective of this work is to present several technical solutions that answer to these challenges. In particular, the main questions to be solved are the spectrum efficiency issue and the increasing user expectations of receiving high quality mobile services. In other words, the main objective is to provide technical solutions for an efficient and flexible usage of the terrestrial broadcasting spectrum for both stationary and mobile services. The first contributions of this scientific work are closely related to the study of the mobile broadcast reception. Firstly, a comprehensive mathematical analysis of the OFDM signal behaviour over time-varying channels is presented. In order to maximize the channel capacity in mobile environments, channel estimation and equalization are studied in depth. First, the most implemented equalization solutions in time-varying scenarios are analyzed, and then, based on these existing techniques, a new equalization algorithm is proposed for enhancing the receivers’ performance. An alternative solution for improving the efficiency under mobile channel conditions is treating the Inter Carrier Interference as another noise source. Specifically, after analyzing the ICI impact and the existing solutions for reducing the ICI penalty, a new approach based on the robustness of FEC codes is presented. This new approach employs one dimensional algorithms at the receiver and entrusts the ICI removing task to the robust forward error correction codes. Finally, another major contribution of this work is the presentation of the Layer Division Multiplexing (LDM) as a spectrum-efficient and flexible solution for offering stationary and mobile services simultaneously. The comprehensive theoretical study developed here verifies the improved spectrum efficiency, whereas the included practical validation confirms the feasibility of the system and presents it as a very promising multiplexing technique, which will surely be a strong candidate for the next generation broadcasting services.[ES]Desde el comienzo de la transmisión de las primeras señales de televisión a principios del siglo pasado, la radiodifusión digital ha evolucionado gracias a una serie de cambios relevantes. Recientemente, como consecuencia directa de la digitalización del servicio, el dividendo digital se ha convertido en uno de los caballos de batalla de la industria de la radiodifusión. De hecho, no son pocos los consorcios internacionales que abogan por asignar parte del espectro de radiodifusión a otros servicios como, por ejemplo, la telefonía móvil, argumentado la poca eficiencia espectral de la tecnología de radiodifusión actual. Asimismo, se debe tener en cuenta que a pesar de que los servicios móviles no se han considerado fundamentales en el pasado, esta tendencia probablemente variará en el futuro cercano. De hecho, se espera que el tráfico derivado de servicios móviles se multiplique por once entre los años 2014 y 2018; y lo que es más importante, se pronostica que dos tercios del tráfico móvil sea video streaming para finales de ese periodo. Por lo tanto, la posibilidad de ofrecer servicios de alta definición en dispositivos móviles es un requisito fundamental para los sistemas de radiodifusión de nueva generación. El principal objetivo de este trabajo es presentar soluciones técnicas que den respuesta a los retos planteados anteriormente. En particular, las principales cuestiones a resolver son la ineficiencia espectral y el incremento de usuarios que demandan mayor calidad en los contenidos para dispositivos móviles. En pocas palabras, el principal objetivo de este trabajo se basa en ofrecer una solución más eficiente y flexible para la transmisión simultánea de servicios fijos y móviles. La primera contribución relevante de este trabajo está relacionada con la recepción de la señal de televisión en movimiento. En primer lugar, se presenta un completo análisis matemático del comportamiento de la señal OFDM en canales variantes con el tiempo. A continuación, con la intención de maximizar la capacidad del canal, se estudian en profundidad los algoritmos de estimación y ecualización. Posteriormente, se analizan los algoritmos de ecualización más implementados, y por último, basándose en estas técnicas, se propone un nuevo algoritmo de ecualización para aumentar el rendimiento de los receptores en tales condiciones. Del mismo modo, se plantea un nuevo enfoque para mejorar la eficiencia de los servicios móviles basado en tratar la interferencia entre portadoras como una fuente de ruido. Concretamente, tras analizar el impacto del ICI en los receptores actuales, se sugiere delegar el trabajo de corrección de dichas distorsiones en códigos FEC muy robustos. Finalmente, la última contribución importante de este trabajo es la presentación de la tecnología LDM como una manera más eficiente y flexible para la transmisión simultánea de servicios fijos y móviles. El análisis teórico presentado confirma el incremento en la eficiencia espectral, mientras que el estudio práctico valida la posible implementación del sistema y presenta la tecnología LDM c

    Advanced Channel Estimation Techniques for Multiple-Input Multiple-Output Multi-Carrier Systems in Doubly-Dispersive Channels

    Get PDF
    Flexible numerology of the physical layer has been introduced in the latest release of 5G new radio (NR) and the baseline waveform generation is chosen to be cyclic-prefix based orthogonal frequency division multiplexing (CP-OFDM). Thanks to the narrow subcarrier spacing and low complexity one tap equalization (EQ) of OFDM, it suits well to time-dispersive channels. For the upcoming 5G and beyond use-case scenarios, it is foreseen that the users might experience high mobility conditions. While the frame structure of the 5G NR is designed for long coherence times, the synchronization and channel estimation (CE) procedures are not fully and reliably covered for diverse applications. The research on alternative multi-carrier waveforms has brought up valuable results in terms of spectral efficiency, applications coexistence and flexibility. Nevertheless, the receiver design becomes more challenging for multiple-input multiple-output (MIMO) non-orthogonal multi-carriers because the receiver must deal with multiple dimensions of interference. This thesis aims to deliver accurate pilot-aided estimations of the wireless channel for coherent detection. Considering a MIMO non-orthogonal multi-carrier, e.g. generalized frequency division multiplexing (GFDM), we initially derive the classical and Bayesian estimators for rich multi-path fading channels, where we theoretically assess the choice of pilot design. Moreover, the well time- and frequency-localization of the pilots in non-orthogonal multi-carriers allows to reuse their energy from cyclic-prefix (CP). Taking advantage of this feature, we derive an iterative approach for joint CE and EQ of MIMO systems. Furthermore, exploiting the block-circularity of GFDM, we comprehensively analyze the complexity aspects, and propose a solution for low complexity implementation. Assuming very high mobility use-cases where the channel varies within the symbol duration, further considerations, particularly the channel coherence time must be taken into account. A promising candidate that is fully independent of the multi-carrier choice is unique word (UW) transmission, where the CP of random nature is replaced by a deterministic sequence. This feature, allows per-block synchronization and channel estimation for robust transmission over extremely doubly-dispersive channels. In this thesis, we propose a novel approach to extend the UW-based physical layer design to MIMO systems and we provide an in-depth study of their out-of-band emission, synchronization, CE and EQ procedures. Via theoretical derivations and simulation results, and comparisons with respect to the state-of-the-art CP-OFDM systems, we show that the proposed UW-based frame design facilitates robust transmission over extremely doubly-dispersive channels.:1 Introduction 1 1.1 Multi-Carrier Waveforms 1 1.2 MIMO Systems 3 1.3 Contributions and Thesis Structure 4 1.4 Notations 6 2 State-of-the-art and Fundamentals 9 2.1 Linear Systems and Problem Statement 9 2.2 GFDM Modulation 11 2.3 MIMO Wireless Channel 12 2.4 Classical and Bayesian Channel Estimation in MIMO OFDM Systems 15 2.5 UW-Based Transmission in SISO Systems 17 2.6 Summary 19 3 Channel Estimation for MIMO Non-Orthogonal Waveforms 21 3.1 Classical and Bayesian Channel Estimation in MIMO GFDM Systems 22 3.1.1 MIMO LS Channel Estimation 23 3.1.2 MIMO LMMSE Channel Estimation 24 3.1.3 Simulation Results 25 3.2 Basic Pilot Designs for GFDM Channel Estimation 29 3.2.1 LS/HM Channel Estimation 31 3.2.2 LMMSE Channel Estimation for GFDM 32 3.2.3 Error Characterization 33 3.2.4 Simulation Results 36 3.3 Interference-Free Pilot Insertion for MIMO GFDM Channel Estimation 39 3.3.1 Interference-Free Pilot Insertion 39 3.3.2 Pilot Observation 40 3.3.3 Complexity 41 3.3.4 Simulation Results 41 3.4 Bayesian Pilot- and CP-aided Channel Estimation in MIMO NonOrthogonal Multi-Carriers 45 3.4.1 Review on System Model 46 3.4.2 Single-Input-Single-Output Systems 47 3.4.3 Extension to MIMO 50 3.4.4 Application to GFDM 51 3.4.5 Joint Channel Estimation and Equalization via LMMSE Parallel Interference Cancellation 57 3.4.6 Complexity Analysis 61 3.4.7 Simulation Results 61 3.5 Pilot- and CP-aided Channel Estimation in Time-Varying Scenarios 67 3.5.1 Adaptive Filtering based on Wiener-Hopf Approac 68 3.5.2 Simulation Results 69 3.6 Summary 72 4 Design of UW-Based Transmission for MIMO Multi-Carriers 73 4.1 Frame Design, Efficiency and Overhead Analysis 74 4.1.1 Illustrative Scenario 74 4.1.2 CP vs. UW Efficiency Analysis 76 4.1.3 Numerical Results 77 4.2 Sequences for UW and OOB Radiation 78 4.2.1 Orthogonal Polyphase Sequences 79 4.2.2 Waveform Engineering for UW Sequences combined with GFDM 79 4.2.3 Simulation Results for OOB Emission of UW-GFDM 81 4.3 Synchronization 82 4.3.1 Transmission over a Centralized MIMO Wireless Channel 82 4.3.2 Coarse Time Acquisition 83 4.3.3 CFO Estimation and Removal 85 4.3.4 Fine Time Acquisition 86 4.3.5 Simulation Results 88 4.4 Channel Estimation 92 4.4.1 MIMO UW-based LMMSE CE 92 4.4.2 Adaptive Filtering 93 4.4.3 Circular UW Transmission 94 4.4.4 Simulation Results 95 4.5 Equalization with Imperfect Channel Knowledge 96 4.5.1 UW-Free Equalization 97 4.5.2 Simulation Results 99 4.6 Summary 102 5 Conclusions and Perspectives 103 5.1 Main Outcomes in Short 103 5.2 Open Challenges 105 A Complementary Materials 107 A.1 Linear Algebra Identities 107 A.2 Proof of lower triangular Toeplitz channel matrix being defective 108 A.3 Calculation of noise-plus-interference covariance matrix for Pilot- and CPaided CE 108 A.4 Bock diagonalization of the effective channel for GFDM 109 A.5 Detailed complexity analysis of Sec. 3.4 109 A.6 CRLB derivations for the pdf (4.24) 113 A.7 Proof that (4.45) emulates a circular CIR at the receiver 11

    Performance Assessment of Dual-Polarized 5G Waveforms and Beyond in Directly Modulated DFB-Laser using Volterra Equalizer

    Get PDF
    International audienceWe investigate the performance of 25-Gbps dual-polarized orthogonal frequency division multiplexing (OFDM)-based modulation in a directly modulated distributed feedback (DFB)-laser over 25 km of single-mode fiber. A Volterra equalizer is used to compensate for the nonlinear effects of the optical fiber. The results show that FBMC-OQAM modulation outperforms OFDM, universal filtered multicarrier (UFMC), and generalized frequency division multiplexing (GFDM) waveforms. Indeed, a target bit error rate of similar to 3.8 x 10(-3) [forward error correction (FEC) limit] for FBMC, UFMC, OFDM, and GFDM can be achieved at -30.5, -26, -16, and -14.9 dBm, respectively. The effect of the DFB laser is also investigated for UFMC, OFDM, and GFDM, and they undergo a Q penalty of 2.44, 2.77, and 4.14 dB, respectively, at their FEC limit points. For FBMC-OQAM, the signal is perfectly recovered when excluding the DFB laser at -30.5 dBm. (C) 2020 Society of Photo-Optical Instrumentation Engineers (SPIE
    • …
    corecore