9,186 research outputs found

    Exploring Virtual Reality and Doppelganger Avatars for the Treatment of Chronic Back Pain

    Get PDF
    Cognitive-behavioral models of chronic pain assume that fear of pain and subsequent avoidance behavior contribute to pain chronicity and the maintenance of chronic pain. In chronic back pain (CBP), avoidance of movements often plays a major role in pain perseverance and interference with daily life activities. In treatment, avoidance is often addressed by teaching patients to reduce pain behaviors and increase healthy behaviors. The current project explored the use of personalized virtual characters (doppelganger avatars) in virtual reality (VR), to influence motor imitation and avoidance, fear of pain and experienced pain in CBP. We developed a method to create virtual doppelgangers, to animate them with movements captured from real-world models, and to present them to participants in an immersive cave virtual environment (CAVE) as autonomous movement models for imitation. Study 1 investigated interactions between model and observer characteristics in imitation behavior of healthy participants. We tested the hypothesis that perceived affiliative characteristics of a virtual model, such as similarity to the observer and likeability, would facilitate observers’ engagement in voluntary motor imitation. In a within-subject design (N=33), participants were exposed to four virtual characters of different degrees of realism and observer similarity, ranging from an abstract stickperson to a personalized doppelganger avatar designed from 3d scans of the observer. The characters performed different trunk movements and participants were asked to imitate these. We defined functional ranges of motion (ROM) for spinal extension (bending backward, BB), lateral flexion (bending sideward, BS) and rotation in the horizontal plane (RH) based on shoulder marker trajectories as behavioral indicators of imitation. Participants’ ratings on perceived avatar appearance were recorded in an Autonomous Avatar Questionnaire (AAQ), based on an explorative factor analysis. Linear mixed effects models revealed that for lateral flexion (BS), a facilitating influence of avatar type on ROM was mediated by perceived identification with the avatar including avatar likeability, avatar-observer-similarity and other affiliative characteristics. These findings suggest that maximizing model-observer similarity may indeed be useful to stimulate observational modeling. Study 2 employed the techniques developed in study 1 with participants who suffered from CBP and extended the setup with real-world elements, creating an immersive mixed reality. The research question was whether virtual doppelgangers could modify motor behaviors, pain expectancy and pain. In a randomized controlled between-subject design, participants observed and imitated an avatar (AVA, N=17) or a videotaped model (VID, N=16) over three sessions, during which the movements BS and RH as well as a new movement (moving a beverage crate) were shown. Again, self-reports and ROMs were used as measures. The AVA group reported reduced avoidance with no significant group differences in ROM. Pain expectancy increased in AVA but not VID over the sessions. Pain and limitations did not significantly differ. We observed a moderation effect of group, with prior pain expectancy predicting pain and avoidance in the VID but not in the AVA group. This can be interpreted as an effect of personalized movement models decoupling pain behavior from movement-related fear and pain expectancy by increasing pain tolerance and task persistence. Our findings suggest that personalized virtual movement models can stimulate observational modeling in general, and that they can increase pain tolerance and persistence in chronic pain conditions. Thus, they may provide a tool for exposure and exercise treatments in cognitive behavioral treatment approaches to CBP

    A prospective, double-blind, pilot, randomized, controlled trial of an "embodied" virtual reality intervention for adults with low back pain

    Get PDF
    Adults with chronic low back pain, disability, moderate-to-severe pain, and high fear of movement and reinjury were recruited into a trial of a novel, automated, digital therapeutics, virtual reality, psychological intervention for pain (DTxP). We conducted a 3-arm, prospective, double-blind, pilot, randomized, controlled trial comparing DTxP with a sham placebo comparator and an open-label standard care. Participants were enrolled for 6 to 8 weeks, after which, the standard care control arm were rerandomized to receive either the DTxP or sham placebo. Forty-two participants completed assessments at baseline, immediately posttreatment (6-8 weeks), 9-week, and 5-month follow-up. We found that participants in the DTxP group reported greater reductions in fear of movement and better global impression of change when compared with sham placebo and standard care post treatment. No other group differences were noted at posttreatment or follow-up. When compared with baseline, participants in the DTxP group reported lower disability at 5-month follow-up, lower pain interference and fear of movement post treatment and follow-up, and lower pain intensity at posttreatment. The sham placebo group also reported lower disability and fear of movement at 5-month follow-up compared with baseline. Standard care did not report any significant changes. There were a number of adverse events, with one participant reporting a serious adverse event in the sham placebo, which was not related to treatment. No substantial changes in medications were noted, and participants in the DTxP group reported positive gaming experiences

    How to Communicate Robot Motion Intent: A Scoping Review

    Full text link
    Robots are becoming increasingly omnipresent in our daily lives, supporting us and carrying out autonomous tasks. In Human-Robot Interaction, human actors benefit from understanding the robot's motion intent to avoid task failures and foster collaboration. Finding effective ways to communicate this intent to users has recently received increased research interest. However, no common language has been established to systematize robot motion intent. This work presents a scoping review aimed at unifying existing knowledge. Based on our analysis, we present an intent communication model that depicts the relationship between robot and human through different intent dimensions (intent type, intent information, intent location). We discuss these different intent dimensions and their interrelationships with different kinds of robots and human roles. Throughout our analysis, we classify the existing research literature along our intent communication model, allowing us to identify key patterns and possible directions for future research.Comment: Interactive Data Visualization of the Paper Corpus: https://rmi.robot-research.d

    Continued study of NAVSTAR/GPS for general aviation

    Get PDF
    A conceptual approach for examining the full potential of Global Positioning Systems (GPS) for the general aviation community is presented. Aspects of an experimental program to demonstrate these concepts are discussed. The report concludes with the observation that the true potential of GPS can only be exploited by utilization in concert with a data link. The capability afforded by the combination of position location and reporting stimulates the concept of GPS providing the auxiliary functions of collision avoidance, and approach and landing guidance. A series of general recommendations for future NASA and civil community efforts in order to continue to support GPS for general aviation are included
    corecore