2,939 research outputs found

    General Rank Multiuser Downlink Beamforming With Shaping Constraints Using Real-valued OSTBC

    Full text link
    In this paper we consider optimal multiuser downlink beamforming in the presence of a massive number of arbitrary quadratic shaping constraints. We combine beamforming with full-rate high dimensional real-valued orthogonal space time block coding (OSTBC) to increase the number of beamforming weight vectors and associated degrees of freedom in the beamformer design. The original multi-constraint beamforming problem is converted into a convex optimization problem using semidefinite relaxation (SDR) which can be solved efficiently. In contrast to conventional (rank-one) beamforming approaches in which an optimal beamforming solution can be obtained only when the SDR solution (after rank reduction) exhibits the rank-one property, in our approach optimality is guaranteed when a rank of eight is not exceeded. We show that our approach can incorporate up to 79 additional shaping constraints for which an optimal beamforming solution is guaranteed as compared to a maximum of two additional constraints that bound the conventional rank-one downlink beamforming designs. Simulation results demonstrate the flexibility of our proposed beamformer design

    Generic Multiuser Coordinated Beamforming for Underlay Spectrum Sharing

    Full text link
    The beamforming techniques have been recently studied as possible enablers for underlay spectrum sharing. The existing beamforming techniques have several common limitations: they are usually system model specific, cannot operate with arbitrary number of transmit/receive antennas, and cannot serve arbitrary number of users. Moreover, the beamforming techniques for underlay spectrum sharing do not consider the interference originating from the incumbent primary system. This work extends the common underlay sharing model by incorporating the interference originating from the incumbent system into generic combined beamforming design that can be applied on interference, broadcast or multiple access channels. The paper proposes two novel multiuser beamforming algorithms for user fairness and sum rate maximization, utilizing newly derived convex optimization problems for transmit and receive beamformers calculation in a recursive optimization. Both beamforming algorithms provide efficient operation for the interference, broadcast and multiple access channels, as well as for arbitrary number of antennas and secondary users in the system. Furthermore, the paper proposes a successive transmit/receive optimization approach that reduces the computational complexity of the proposed recursive algorithms. The results show that the proposed complexity reduction significantly improves the convergence rates and can facilitate their operation in scenarios which require agile beamformers computation.Comment: 30 pages, 5 figure

    Directional Relays for Multi-Hop Cooperative Cognitive Radio Networks

    Get PDF
    In this paper, we investigate power allocation and beamforming in a relay assisted cognitive radio (CR) network. Our objective is to maximize the performance of the CR network while limiting interference in the direction of the primary users (PUs). In order to achieve these goals, we first consider joint power allocation and beamforming for cognitive nodes in direct links. Then, we propose an optimal power allocation strategy for relay nodes in indirect transmissions. Unlike the conventional cooperative relaying networks, the applied relays are equipped with directional antennas to further reduce the interference to PUs and meet the CR network requirements. The proposed approach employs genetic algorithm (GA) to solve the optimization problems. Numerical simulation results illustrate the quality of service (QoS) satisfaction in both primary and secondary networks. These results also show that notable improvements are achieved in the system performance if the conventional omni-directional relays are replaced with directional ones

    Peak to average power ratio based spatial spectrum sensing for cognitive radio systems

    Get PDF
    The recent convergence of wireless standards for incorporation of spatial dimension in wireless systems has made spatial spectrum sensing based on Peak to Average Power Ratio (PAPR) of the received signal, a promising approach. This added dimension is principally exploited for stream multiplexing, user multiplexing and spatial diversity. Considering such a wireless environment for primary users, we propose an algorithm for spectrum sensing by secondary users which are also equipped with multiple antennas. The proposed spatial spectrum sensing algorithm is based on the PAPR of the spatially received signals. Simulation results show the improved performance once the information regarding spatial diversity of the primary users is incorporated in the proposed algorithm. Moreover, through simulations a better performance is achieved by using different diversity schemes and different parameters like sensing time and scanning interval
    corecore