124 research outputs found

    Resource Allocation for Device-to-Device Communications in Multi-Cell Multi-Band Heterogeneous Cellular Networks

    Full text link
    Heterogeneous cellular networks (HCNs) with millimeter wave (mm-wave) communications are considered as a promising technology for the fifth generation mobile networks. Mm-wave has the potential to provide multiple gigabit data rate due to the broad spectrum. Unfortunately, additional free space path loss is also caused by the high carrier frequency. On the other hand, mm-wave signals are sensitive to obstacles and more vulnerable to blocking effects. To address this issue, highly directional narrow beams are utilized in mm-wave networks. Additionally, device-to-device (D2D) users make full use of their proximity and share uplink spectrum resources in HCNs to increase the spectrum efficiency and network capacity. Towards the caused complex interferences, the combination of D2D-enabled HCNs with small cells densely deployed and mm-wave communications poses a big challenge to the resource allocation problems. In this paper, we formulate the optimization problem of D2D communication spectrum resource allocation among multiple micro-wave bands and multiple mm-wave bands in HCNs. Then, considering the totally different propagation conditions on the two bands, a heuristic algorithm is proposed to maximize the system transmission rate and approximate the solutions with sufficient accuracies. Compared with other practical schemes, we carry out extensive simulations with different system parameters, and demonstrate the superior performance of the proposed scheme. In addition, the optimality and complexity are simulated to further verify effectiveness and efficiency.Comment: 13 pages, 11 figures, IEEE Transactions on Vehicular Technolog

    Transceiver design and multi-hop D2D for UAV IoT coverage in disasters

    Get PDF
    When natural disasters strike, the coverage for Internet of Things (IoT) may be severely destroyed, due to the damaged communications infrastructure. Unmanned aerial vehicles (UAVs) can be exploited as flying base stations to provide emergency coverage for IoT, due to its mobility and flexibility. In this paper, we propose multi-antenna transceiver design and multi-hop device-to-device (D2D) communication to guarantee the reliable transmission and extend the UAV coverage for IoT in disasters. Firstly, multi-hop D2D links are established to extend the coverage of UAV emergency networks due to the constrained transmit power of the UAV. In particular, a shortest-path-routing algorithm is proposed to establish the D2D links rapidly with minimum nodes. The closed-form solutions for the number of hops and the outage probability are derived for the uplink and downlink. Secondly, the transceiver designs for the UAV uplink and downlink are studied to optimize the performance of UAV transmission. Due to the non-convexity of the problem, they are first transformed into convex ones and then, low-complexity algorithms are proposed to solve them efficiently. Simulation results show the performance improvement in the throughput and outage probability by the proposed schemes for UAV wireless coverage of IoT in disasters

    Energy-Aware Radio Resource Management in D2D-Enabled Multi-Tier HetNets

    Get PDF
    Hybrid networks consisting of both millimeter wave (mmWave) and microwave (μW) capabilities are strongly contested for next-generation cellular communications. A similar avenue of current research is device-to-device (D2D) communications, where users establish direct links with each other rather than using central base stations. However, a hybrid network, where D2D transmissions coexist, requires special attention in terms of efficient resource allocation. This paper investigates dynamic resource sharing between network entities in a downlink transmission scheme to maximize energy efficiency (EE) of the cellular users (CUs) served by either (μW) macrocells or mmWave small cells while maintaining a minimum quality-of-service (QoS) for the D2D users. To address this problem, first, a self-adaptive power control mechanism for the D2D pairs is formulated, subject to an interference threshold for the CUs while satisfying their minimum QoS level. Subsequently, an EE optimization problem, which is aimed at maximizing the EE for both CUs and D2D pairs, has been solved. Simulation results demonstrate the effectiveness of our proposed algorithm, which studies the inherent tradeoffs between system EE, system sum rate, and outage probability for various QoS levels and varying densities of D2D pairs and CUs

    Limited Feedback Scheme for Device to Device Communications in 5G cellular networks with Reliability and Cellular Secrecy Outage Constraints

    Get PDF
    In this paper, we propose a device to device (D2D) communication scenario underlaying a cellular network where both D2D and cellular users (CUs) are discrete power-rate systems with limited feedback from the receivers. It is assumed that there exists an adversary which wants to eavesdrop on the information transmission from the base station (BS) to CUs. Since D2D communication shares the same spectrum with cellular network, cross interference must be considered. However, when secrecy capacity is considered, the interference caused by D2D communication can help to improve the secrecy communications by confusing the eavesdroppers. Since both systems share the same spectrum, cross interference must be considered. We formulate the proposed resource allocation into an optimization problem whose objective is to maximize the average transmission rate of D2D pair in the presence of the cellular communications under average transmission power constraint. For the cellular network, we require a minimum average achievable secrecy rate in the absence of D2D communication as well as a maximum secrecy outage probability in the presence of D2D communication which should be satisfied. Due to high complexity convex optimization methods, to solve the proposed optimization problem, we apply Particle Swarm Optimization (PSO) which is an evolutionary approach. Moreover, we model and study the error in the feedback channel and the imperfectness of channel distribution information (CDI) using parametric and nonparametric methods. Finally, the impact of different system parameters on the performance of the proposed scheme is investigated through simulations. The performance of the proposed scheme is evaluated using numerical results for different scenarios.Comment: IEEE Transactions on Vehicular Technology, 201

    Stochastic Geometry Based Performance Study in 5G Wireless Networks

    Get PDF
    As the complexity of modern cellular networks continuously increases along with the evolution of technologies and the quick explosion of mobile data traffic, conventional large scale system level simulations and analytical tools become either too complicated or less tractable and accurate. Therefore, novel analytical models are actively pursued. In recent years, stochastic geometry models have been recognized as powerful tools to analyze the key performance metrics of cellular networks. In this dissertation, stochastic geometry based analytical models are developed to analyze the performance of some key technologies proposed for 5G mobile networks. Particularly, Device-to-Device (D2D) communication, Non-orthogonal multiple access (NOMA), and ultra-dense networks (UDNs) are investigated and analyzed by stochastic geometry models, more specifically, Poisson Point Process (PPP) models. D2D communication enables direct communication between mobile users in proximity to each other bypassing base station (BS). Embedding D2D communication into existing cellular networks brings many benefits such as improving spectrum efficiency, decreasing power energy consumption, and enabling novel location-based services. However, these benefits may not be fully exploited if the co-channel interference among D2D users and cellular users is not properly tackled. In this dissertation, various frequency reuse and power control schemes are proposed, aiming at mitigating the interference between D2D users and conventional cellular users. The performance gain of proposed schemes is analyzed on a system modeled by a 2-tier PPP and validated by numerical simulations. NOMA is a promising radio access technology for 5G cellular networks. Different with widely applied orthogonal multiple access (OMA) such as orthogonal frequency division multiple access (OFDMA) and single carrier frequency division multiple access (SC-FDMA), NOMA allows multiple users to use the same frequency/time resource and offers many advantages such as improving spectral efficiency, enhancing connectivity, providing higher cell-edge throughput, and reducing transmission latency. Although some initial performance analysis has been done on NOMA with single cell scenario, the system level performance of NOMA in a multi-cell scenario is not investigated in existing work. In this dissertation, analytical frameworks are developed to evaluate the performance of a wireless network with NOMA on both downlink and uplink. Distinguished from existing publications on NOMA, the framework developed in this dissertation is the first one that takes inter-cell interference into consideration. UDN is another key technology for 5G wireless networks to achieve high capacity and coverage. Due to the existence of line-of-sight (LoS)/non-line-of-sight (NLoS) propagation and bounded path loss behavior in UDN networks, the tractability of the original PPP model diminishes when analyzing the performance of UDNs. Therefore, a dominant BS (base station)-based approximation model is developed in this dissertation. By applying reasonable mathematical approximations, the tractability of the PPP model is preserved and the closed form solution can be derived. The numerical results demonstrate that the developed analytical model is accurate in a wide range of network densities. The analysis conducted in this dissertation demonstrates that stochastic geometry models can serve as powerful tools to analyze the performance of 5G technologies in a dense wireless network deployment. The frameworks developed in this dissertation provide general yet powerful analytical tools that can be readily extended to facilitate other research in wireless networks
    • …
    corecore