573 research outputs found

    The coexistence of cognitive radio and radio astronomy

    Get PDF
    An increase of the efficiency of spectrum usage requires the development of new communication techniques. Cognitive radio may be one of those new technique, which uses unoccupied frequency bands for communications. This will lead to more power in the bands and therefore an increasing level of Radio Frequency Interference (RFI), which would cause loss of operation particularly for passive users of the spectrum, such as radio astronomy. This paper will address this issue and will present calculations indicating that the impact of cognitive radio on radio astronomy observations is considerable. The signal levels resulting from cognitive radio systems indicate that spectral bands used for cognitive radio applications cannot be used for radio astronomical research

    Efficient DSP and Circuit Architectures for Massive MIMO: State-of-the-Art and Future Directions

    Full text link
    Massive MIMO is a compelling wireless access concept that relies on the use of an excess number of base-station antennas, relative to the number of active terminals. This technology is a main component of 5G New Radio (NR) and addresses all important requirements of future wireless standards: a great capacity increase, the support of many simultaneous users, and improvement in energy efficiency. Massive MIMO requires the simultaneous processing of signals from many antenna chains, and computational operations on large matrices. The complexity of the digital processing has been viewed as a fundamental obstacle to the feasibility of Massive MIMO in the past. Recent advances on system-algorithm-hardware co-design have led to extremely energy-efficient implementations. These exploit opportunities in deeply-scaled silicon technologies and perform partly distributed processing to cope with the bottlenecks encountered in the interconnection of many signals. For example, prototype ASIC implementations have demonstrated zero-forcing precoding in real time at a 55 mW power consumption (20 MHz bandwidth, 128 antennas, multiplexing of 8 terminals). Coarse and even error-prone digital processing in the antenna paths permits a reduction of consumption with a factor of 2 to 5. This article summarizes the fundamental technical contributions to efficient digital signal processing for Massive MIMO. The opportunities and constraints on operating on low-complexity RF and analog hardware chains are clarified. It illustrates how terminals can benefit from improved energy efficiency. The status of technology and real-life prototypes discussed. Open challenges and directions for future research are suggested.Comment: submitted to IEEE transactions on signal processin

    SGD Frequency-Domain Space-Frequency Semiblind Multiuser Receiver with an Adaptive Optimal Mixing Parameter

    Get PDF
    A novel stochastic gradient descent frequency-domain (FD) space-frequency (SF) semiblind multiuser receiver with an adaptive optimal mixing parameter is proposed to improve performance of FD semiblind multiuser receivers with a fixed mixing parameters and reduces computational complexity of suboptimal FD semiblind multiuser receivers in SFBC downlink MIMO MC-CDMA systems where various numbers of users exist. The receiver exploits an adaptive mixing parameter to mix information ratio between the training-based mode and the blind-based mode. Analytical results prove that the optimal mixing parameter value relies on power and number of active loaded users existing in the system. Computer simulation results show that when the mixing parameter is adapted closely to the optimal mixing parameter value, the performance of the receiver outperforms existing FD SF adaptive step-size (AS) LMS semiblind based with a fixed mixing parameter and conventional FD SF AS-LMS training-based multiuser receivers in the MSE, SER and signal to interference plus noise ratio in both static and dynamic environments

    Passive radar on moving platforms exploiting DVB-T transmitters of opportunity

    Get PDF
    The work, effort, and research put into passive radar for stationary receivers have shown significant developments and progress in recent years. The next challenge is mounting a passive radar on moving platforms for the purpose of target detection and ground imaging, e.g. for covert border control. A passive radar on a moving platform has many advantages and offers many benefits, however there is also a considerable drawback that has limited its application so far. Due to the movement the clutter returns are spread in Doppler and may overlap moving targets, which are then difficult to detect. While this problem is common for an active radar as well, with a passive radar a further problem arises: It is impossible to control the exploited time-varying waveform emitted from a telecommunication transmitter. A conventional processing approach is ineffective as the time-varying waveform leads to residuals all over the processed data. Therefore a dedicated clutter cancellation method, e.g. the displaced phase centre antenna (DPCA) approach, does not have the ability to completely remove the clutter, so that target detection is considerably limited. The aim must be therefore to overcome this limitation by exploiting a processing technique, which is able to remove these residuals in order to cope with the clutter returns thus making target detection feasible. The findings of this research and thesis show that a reciprocal filtering based stage is able to provide a time-invariant impulse response similar to the transmissions of an active radar. Due to this benefit it is possible to achieve an overall complete clutter removal together with a dedicated DPCA stage, so that moving target detection is considerably improved, making it possible in the first place. Based on mathematical analysis and on simulations it is proven, that by exploiting this processing in principle an infinite clutter cancellation can be achieved. This result shows that the reciprocal filter is an essential processing stage. Applications on real data acquired from two different measurement campaigns prove these results. By the proposed approach, the limiting factor (i.e. the time-varying waveform) for target detection is negotiated, and in principle any clutter cancellation technique known from active radar can be applied. Therefore this analysis and the results provide a substantial contribution to the passive radar research community and enables it to address the next questions

    MIMO signal processing in offset-QAM based filter bank multicarrier systems

    Get PDF
    Next-generation communication systems have to comply with very strict requirements for increased flexibility in heterogeneous environments, high spectral efficiency, and agility of carrier aggregation. This fact motivates research in advanced multicarrier modulation (MCM) schemes, such as filter bank-based multicarrier (FBMC) modulation. This paper focuses on the offset quadrature amplitude modulation (OQAM)-based FBMC variant, known as FBMC/OQAM, which presents outstanding spectral efficiency and confinement in a number of channels and applications. Its special nature, however, generates a number of new signal processing challenges that are not present in other MCM schemes, notably, in orthogonal-frequency-division multiplexing (OFDM). In multiple-input multiple-output (MIMO) architectures, which are expected to play a primary role in future communication systems, these challenges are intensified, creating new interesting research problems and calling for new ideas and methods that are adapted to the particularities of the MIMO-FBMC/OQAM system. The goal of this paper is to focus on these signal processing problems and provide a concise yet comprehensive overview of the recent advances in this area. Open problems and associated directions for future research are also discussed.Peer ReviewedPostprint (author's final draft

    Space time adaptive processing in multichannel passive radar

    Get PDF
    Nowdays, passive bistatic radar (PBR) systems have become a subject of intensive research, owing essentially to its unique features, such as low probability of interception, small size and low cost. Passive radar is a concept where illuminators of opportunity are used. In a bistatic passive radar the main challenges are: estimating the reference signal which is required for detection, mitigating the direct signal, multipath and clutter echoes on the surveillance channel and finally achieving a sufficient SINR to detect targets. This thesis is concerned with the definition and application of adaptive signal processing techniques to a multichannel passive radar receiver. Adaptive signal processing techniques are well known for active pulse radars. A PBR system operates in a continuous mode, therefore the received signal is not avalaible in the classical array elements-slow time-range domain such as in active pulse radar. A major component of this research focuses on demonstrating the applicability of traditional adaptive algorithms, developed in the active radar contest, with passive radar. Firstly a new detailed formulation of the sub optimum “batches algorithm”, used to evaluate the cross correlation function, is proposed. Then innovative 1D temporal adaptive processing techniques are defined extending the matched filter concept to an adaptive matched filter formulation. Afterwards a new spatial adaptive technique, based on the application of the adaptive digital beamforming after the matched filter, is investigated. Finally both 1D spatial and temporal adaptive techniques are extended to 2D space-time adaptive processing techniques. Specifically we demonstrate the applicability of STAP processing to a passive bistatic radar and we show how the classical STAP algorithms, developed for active radar systems, can be applied to a PBR system. The new defined passive radar signal processing architectures are compared with the standard approaches and the effectiveness of the proposed techniques is demonstrated considering both simulated and real data

    Orthogonal frequency division multiplexing multiple-input multiple-output automotive radar with novel signal processing algorithms

    Get PDF
    Advanced driver assistance systems that actively assist the driver based on environment perception achieved significant advances in recent years. Along with this development, autonomous driving became a major research topic that aims ultimately at development of fully automated, driverless vehicles. Since such applications rely on environment perception, their ever increasing sophistication imposes growing demands on environmental sensors. Specifically, the need for reliable environment sensing necessitates the development of more sophisticated, high-performance radar sensors. A further vital challenge in terms of increased radar interference arises with the growing market penetration of the vehicular radar technology. To address these challenges, in many respects novel approaches and radar concepts are required. As the modulation is one of the key factors determining the radar performance, the research of new modulation schemes for automotive radar becomes essential. A topic that emerged in the last years is the radar operating with digitally generated waveforms based on orthogonal frequency division multiplexing (OFDM). Initially, the use of OFDM for radar was motivated by the combination of radar with communication via modulation of the radar waveform with communication data. Some subsequent works studied the use of OFDM as a modulation scheme in many different radar applications - from adaptive radar processing to synthetic aperture radar. This suggests that the flexibility provided by OFDM based digital generation of radar waveforms can potentially enable novel radar concepts that are well suited for future automotive radar systems. This thesis aims to explore the perspectives of OFDM as a modulation scheme for high-performance, robust and adaptive automotive radar. To this end, novel signal processing algorithms and OFDM based radar concepts are introduced in this work. The main focus of the thesis is on high-end automotive radar applications, while the applicability for real time implementation is of primary concern. The first part of this thesis focuses on signal processing algorithms for distance-velocity estimation. As a foundation for the algorithms presented in this thesis, a novel and rigorous signal model for OFDM radar is introduced. Based on this signal model, the limitations of the state-of-the-art OFDM radar signal processing are pointed out. To overcome these limitations, we propose two novel signal processing algorithms that build upon the conventional processing and extend it by more sophisticated modeling of the radar signal. The first method named all-cell Doppler compensation (ACDC) overcomes the Doppler sensitivity problem of OFDM radar. The core idea of this algorithm is the scenario-independent correction of Doppler shifts for the entire measurement signal. Since Doppler effect is a major concern for OFDM radar and influences the radar parametrization, its complete compensation opens new perspectives for OFDM radar. It not only achieves an improved, Doppler-independent performance, it also enables more favorable system parametrization. The second distance-velocity estimation algorithm introduced in this thesis addresses the issue of range and Doppler frequency migration due to the target’s motion during the measurement. For the conventional radar signal processing, these migration effects set an upper limit on the simultaneously achievable distance and velocity resolution. The proposed method named all-cell migration compensation (ACMC) extends the underlying OFDM radar signal model to account for the target motion. As a result, the effect of migration is compensated implicitly for the entire radar measurement, which leads to an improved distance and velocity resolution. Simulations show the effectiveness of the proposed algorithms in overcoming the two major limitations of the conventional OFDM radar signal processing. As multiple-input multiple-output (MIMO) radar is a well-established technology for improving the direction-of-arrival (DOA) estimation, the second part of this work studies the multiplexing methods for OFDM radar that enable simultaneous use of multiple transmit antennas for MIMO radar processing. After discussing the drawbacks of known multiplexing methods, we introduce two advanced multiplexing schemes for OFDM-MIMO radar based on non-equidistant interleaving of OFDM subcarriers. These multiplexing approaches exploit the multicarrier structure of OFDM for generation of orthogonal waveforms that enable a simultaneous operation of multiple MIMO channels occupying the same bandwidth. The primary advantage of these methods is that despite multiplexing they maintain all original radar parameters (resolution and unambiguous range in distance and velocity) for each individual MIMO channel. To obtain favorable interleaving patterns with low sidelobes, we propose an optimization approach based on genetic algorithms. Furthermore, to overcome the drawback of increased sidelobes due to subcarrier interleaving, we study the applicability of sparse processing methods for the distance-velocity estimation from measurements of non-equidistantly interleaved OFDM-MIMO radar. We introduce a novel sparsity based frequency estimation algorithm designed for this purpose. The third topic addressed in this work is the robustness of OFDM radar to interference from other radar sensors. In this part of the work we study the interference robustness of OFDM radar and propose novel interference mitigation techniques. The first interference suppression algorithm we introduce exploits the robustness of OFDM to narrowband interference by dropping subcarriers strongly corrupted by interference from evaluation. To avoid increase of sidelobes due to missing subcarriers, their values are reconstructed from the neighboring ones based on linear prediction methods. As a further measure for increasing the interference robustness in a more universal manner, we propose the extension of OFDM radar with cognitive features. We introduce the general concept of cognitive radar that is capable of adapting to the current spectral situation for avoiding interference. Our work focuses mainly on waveform adaptation techniques; we propose adaptation methods that allow dynamic interference avoidance without affecting adversely the estimation performance. The final part of this work focuses on prototypical implementation of OFDM-MIMO radar. With the constructed prototype, the feasibility of OFDM for high-performance radar applications is demonstrated. Furthermore, based on this radar prototype the algorithms presented in this thesis are validated experimentally. The measurements confirm the applicability of the proposed algorithms and concepts for real world automotive radar implementations
    corecore