62,245 research outputs found

    Interference Networks with Point-to-Point Codes

    Full text link
    The paper establishes the capacity region of the Gaussian interference channel with many transmitter-receiver pairs constrained to use point-to-point codes. The capacity region is shown to be strictly larger in general than the achievable rate regions when treating interference as noise, using successive interference cancellation decoding, and using joint decoding. The gains in coverage and achievable rate using the optimal decoder are analyzed in terms of ensemble averages using stochastic geometry. In a spatial network where the nodes are distributed according to a Poisson point process and the channel path loss exponent is β>2\beta > 2, it is shown that the density of users that can be supported by treating interference as noise can scale no faster than B2/βB^{2/\beta} as the bandwidth BB grows, while the density of users can scale linearly with BB under optimal decoding

    CFMA (Compute-Forward Multiple Access) and its Applications in Network Information Theory

    Get PDF
    While both fundamental limits and system implementations are well understood for the point-to-point communication system, much less is developed for general communication networks. This thesis contributes towards the design and analysis of advanced coding schemes for multi-user communication networks with structured codes. The first part of the thesis investigates the usefulness of lattice codes in Gaussian networks with a generalized compute-and-forward scheme. As an application, we introduce a novel multiple access technique --- Compute-Forward Multiple Access (CFMA), and show that it achieves the capacity region of the Gaussian multiple access channel (MAC) with low receiver complexities. Similar coding schemes are also devised for other multi-user networks, including the Gaussian MAC with states, the two-way relay channel, the many-to-one interference channel, etc., demonstrating improvements of system performance because of the good interference mitigation property of lattice codes. As a common theme in the thesis, computing the sum of codewords over a Gaussian MAC is of particular theoretical importance. We study this problem with nested linear codes, and improve upon the currently best known results obtained by nested lattice codes. Inspired by the advantages of linear and lattice codes in Gaussian networks, we make a further step towards understanding intrinsic properties of the sum of linear codes. The final part of the thesis introduces the notion of typical sumset and presents asymptotic results on the typical sumset size of linear codes. The results offer new insight to coding schemes with structured codes

    Efficient Globally Optimal Resource Allocation in Wireless Interference Networks

    Get PDF
    Radio resource allocation in communication networks is essential to achieve optimal performance and resource utilization. In modern interference networks the corresponding optimization problems are often nonconvex and their solution requires significant computational resources. Hence, practical systems usually use algorithms with no or only weak optimality guarantees for complexity reasons. Nevertheless, asserting the quality of these methods requires the knowledge of the globally optimal solution. State-of-the-art global optimization approaches mostly employ Tuy's monotonic optimization framework which has some major drawbacks, especially when dealing with fractional objectives or complicated feasible sets. In this thesis, two novel global optimization frameworks are developed. The first is based on the successive incumbent transcending (SIT) scheme to avoid numerical problems with complicated feasible sets. It inherently differentiates between convex and nonconvex variables, preserving the low computational complexity in the number of convex variables without the need for cumbersome decomposition methods. It also treats fractional objectives directly without the need of Dinkelbach's algorithm. Benchmarks show that it is several orders of magnitude faster than state-of-the-art algorithms. The second optimization framework is named mixed monotonic programming (MMP) and generalizes monotonic optimization. At its core is a novel bounding mechanism accompanied by an efficient BB implementation that helps exploit partial monotonicity without requiring a reformulation in terms of difference of increasing (DI) functions. While this often leads to better bounds and faster convergence, the main benefit is its versatility. Numerical experiments show that MMP can outperform monotonic programming by a few orders of magnitude, both in run time and memory consumption. Both frameworks are applied to maximize throughput and energy efficiency (EE) in wireless interference networks. In the first application scenario, MMP is applied to evaluate the EE gain rate splitting might provide over point-to-point codes in Gaussian interference channels. In the second scenario, the SIT based algorithm is applied to study throughput and EE for multi-way relay channels with amplify-and-forward relaying. In both cases, rate splitting gains of up to 4.5% are observed, even though some limiting assumptions have been made

    Interference Mitigation in Large Random Wireless Networks

    Full text link
    A central problem in the operation of large wireless networks is how to deal with interference -- the unwanted signals being sent by transmitters that a receiver is not interested in. This thesis looks at ways of combating such interference. In Chapters 1 and 2, we outline the necessary information and communication theory background, including the concept of capacity. We also include an overview of a new set of schemes for dealing with interference known as interference alignment, paying special attention to a channel-state-based strategy called ergodic interference alignment. In Chapter 3, we consider the operation of large regular and random networks by treating interference as background noise. We consider the local performance of a single node, and the global performance of a very large network. In Chapter 4, we use ergodic interference alignment to derive the asymptotic sum-capacity of large random dense networks. These networks are derived from a physical model of node placement where signal strength decays over the distance between transmitters and receivers. (See also arXiv:1002.0235 and arXiv:0907.5165.) In Chapter 5, we look at methods of reducing the long time delays incurred by ergodic interference alignment. We analyse the tradeoff between reducing delay and lowering the communication rate. (See also arXiv:1004.0208.) In Chapter 6, we outline a problem that is equivalent to the problem of pooled group testing for defective items. We then present some new work that uses information theoretic techniques to attack group testing. We introduce for the first time the concept of the group testing channel, which allows for modelling of a wide range of statistical error models for testing. We derive new results on the number of tests required to accurately detect defective items, including when using sequential `adaptive' tests.Comment: PhD thesis, University of Bristol, 201

    Open-Loop Spatial Multiplexing and Diversity Communications in Ad Hoc Networks

    Full text link
    This paper investigates the performance of open-loop multi-antenna point-to-point links in ad hoc networks with slotted ALOHA medium access control (MAC). We consider spatial multiplexing transmission with linear maximum ratio combining and zero forcing receivers, as well as orthogonal space time block coded transmission. New closed-form expressions are derived for the outage probability, throughput and transmission capacity. Our results demonstrate that both the best performing scheme and the optimum number of transmit antennas depend on different network parameters, such as the node intensity and the signal-to-interference-and-noise ratio operating value. We then compare the performance to a network consisting of single-antenna devices and an idealized fully centrally coordinated MAC. These results show that multi-antenna schemes with a simple decentralized slotted ALOHA MAC can outperform even idealized single-antenna networks in various practical scenarios.Comment: 51 pages, 19 figures, submitted to IEEE Transactions on Information Theor
    • …
    corecore