4,970 research outputs found

    Stochastic Geometry Modeling and Performance Evaluation of mmWave Cellular Communications

    Full text link
    In this paper, a new mathematical framework to the analysis of millimeter wave cellular networks is introduced. Its peculiarity lies in considering realistic path-loss and blockage models, which are derived from experimental data recently reported in the literature. The path-loss model accounts for different distributions for line-of-sight and non-line-of-sight propagation conditions and the blockage model includes an outage state that provides a better representation of the outage possibilities of millimeter wave communications. By modeling the locations of the base stations as points of a Poisson point process and by relying upon a noise-limited approximation for typical millimeter wave network deployments, exact integral expressions for computing the coverage probability and the average rate are obtained. With the aid of Monte Carlo simulations, the noise-limited approximation is shown to be sufficiently accurate for typical network densities. Furthermore, it is shown that sufficiently dense millimeter wave cellular networks are capable of outperforming micro wave cellular networks, both in terms of coverage probability and average rate.Comment: Presented at 2015 IEEE International Conference on Communications (ICC), London, UK (June 2015). arXiv admin note: substantial text overlap with arXiv:1410.357

    Wirelessly Powered Backscatter Communication Networks: Modeling, Coverage and Capacity

    Get PDF
    Future Internet-of-Things (IoT) will connect billions of small computing devices embedded in the environment and support their device-to-device (D2D) communication. Powering this massive number of embedded devices is a key challenge of designing IoT since batteries increase the devices' form factors and battery recharging/replacement is difficult. To tackle this challenge, we propose a novel network architecture that enables D2D communication between passive nodes by integrating wireless power transfer and backscatter communication, which is called a wirelessly powered backscatter communication (WP-BackCom) network. In the network, standalone power beacons (PBs) are deployed for wirelessly powering nodes by beaming unmodulated carrier signals to targeted nodes. Provisioned with a backscatter antenna, a node transmits data to an intended receiver by modulating and reflecting a fraction of a carrier signal. Such transmission by backscatter consumes orders-of-magnitude less power than a traditional radio. Thereby, the dense deployment of low-complexity PBs with high transmission power can power a large-scale IoT. In this paper, a WP-BackCom network is modeled as a random Poisson cluster process in the horizontal plane where PBs are Poisson distributed and active ad-hoc pairs of backscatter communication nodes with fixed separation distances form random clusters centered at PBs. The backscatter nodes can harvest energy from and backscatter carrier signals transmitted by PBs. Furthermore, the transmission power of each node depends on the distance from the associated PB. Applying stochastic geometry, the network coverage probability and transmission capacity are derived and optimized as functions of backscatter parameters, including backscatter duty cycle and reflection coefficient, as well as the PB density. The effects of the parameters on network performance are characterized.Comment: 28 pages, 11 figures, has been submitted to IEEE Trans. on Wireless Communicatio

    Power Beacon-Assisted Millimeter Wave Ad Hoc Networks

    Get PDF
    Deployment of low cost power beacons (PBs) is a promising solution for dedicated wireless power transfer (WPT) in future wireless networks. In this paper, we present a tractable model for PB-assisted millimeter wave (mmWave) wireless ad hoc networks, where each transmitter (TX) harvests energy from all PBs and then uses the harvested energy to transmit information to its desired receiver. Our model accounts for realistic aspects of WPT and mmWave transmissions, such as power circuit activation threshold, allowed maximum harvested power, maximum transmit power, beamforming and blockage. Using stochastic geometry, we obtain the Laplace transform of the aggregate received power at the TX to calculate the power coverage probability. We approximate and discretize the transmit power of each TX into a finite number of discrete power levels in log scale to compute the channel and total coverage probability. We compare our analytical predictions to simulations and observe good accuracy. The proposed model allows insights into effect of system parameters, such as transmit power of PBs, PB density, main lobe beam-width and power circuit activation threshold on the overall coverage probability. The results confirm that it is feasible and safe to power TXs in a mmWave ad hoc network using PBs.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Millimeter Wave Cellular Networks: A MAC Layer Perspective

    Full text link
    The millimeter wave (mmWave) frequency band is seen as a key enabler of multi-gigabit wireless access in future cellular networks. In order to overcome the propagation challenges, mmWave systems use a large number of antenna elements both at the base station and at the user equipment, which lead to high directivity gains, fully-directional communications, and possible noise-limited operations. The fundamental differences between mmWave networks and traditional ones challenge the classical design constraints, objectives, and available degrees of freedom. This paper addresses the implications that highly directional communication has on the design of an efficient medium access control (MAC) layer. The paper discusses key MAC layer issues, such as synchronization, random access, handover, channelization, interference management, scheduling, and association. The paper provides an integrated view on MAC layer issues for cellular networks, identifies new challenges and tradeoffs, and provides novel insights and solution approaches.Comment: 21 pages, 9 figures, 2 tables, to appear in IEEE Transactions on Communication

    Understanding Noise and Interference Regimes in 5G Millimeter-Wave Cellular Networks

    Full text link
    With the severe spectrum shortage in conventional cellular bands, millimeter-wave (mmWave) frequencies have been attracting growing attention for next-generation micro- and picocellular wireless networks. A fundamental and open question is whether mmWave cellular networks are likely to be noise- or interference-limited. Identifying in which regime a network is operating is critical for the design of MAC and physical-layer procedures and to provide insights on how transmissions across cells should be coordinated to cope with interference. This work uses the latest measurement-based statistical channel models to accurately assess the Interference-to-Noise Ratio (INR) in a wide range of deployment scenarios. In addition to cell density, we also study antenna array size and antenna patterns, whose effects are critical in the mmWave regime. The channel models also account for blockage, line-of-sight and non-line-of-sight regimes as well as local scattering, that significantly affect the level of spatial isolation
    corecore