46 research outputs found

    Interference Aware Cognitive Femtocell Networks

    Get PDF
    Femtocells Access Points (FAP) are low power, plug and play home base stations which are designed to extend the cellular radio range in indoor environments where macrocell coverage is generally poor. They offer significant increases in data rates over a short range, enabling high speed wireless and mobile broadband services, with the femtocell network overlaid onto the macrocell in a dual-tier arrangement. In contrast to conventional cellular systems which are well planned, FAP are arbitrarily installed by the end users and this can create harmful interference to both collocated femtocell and macrocell users. The interference becomes particularly serious in high FAP density scenarios and compromises the ensuing data rate. Consequently, effective management of both cross and co-tier interference is a major design challenge in dual-tier networks. Since traditional radio resource management techniques and architectures for single-tier systems are either not applicable or operate inefficiently, innovative dual-tier approaches to intelligently manage interference are required. This thesis presents a number of original contributions to fulfill this objective including, a new hybrid cross-tier spectrum sharing model which builds upon an existing fractional frequency reuse technique to ensure minimal impact on the macro-tier resource allocation. A new flexible and adaptive virtual clustering framework is then formulated to alleviate co-tier interference in high FAP densities situations and finally, an intelligent coverage extension algorithm is developed to mitigate excessive femto-macrocell handovers, while upholding the required quality of service provision. This thesis contends that to exploit the undoubted potential of dual-tier, macro-femtocell architectures an interference awareness solution is necessary. Rigorous evidence confirms that noteworthy performance improvements can be achieved in the quality of the received signal and throughput by applying cognitive methods to manage interference

    Application of fractional frequency reuse technique for cancellation of interference in heterogeneous cellular network

    Get PDF
    The continuously growing number of mobile devices in terms of hardware and applications augments the necessity for higher data rates and a larger capacity in wireless communication networks. The Long Term Evolution (LTE) standard was designed to provide these mobile users with a better throughput, coverage and a lower latency. This thesis studies a specific area in Heterogeneous Networks; the subject of femtocells. The aim of femtocells is to provide better indoor coverage so as to allow users to benefit from higher data rates while reducing the load on the macro cell. Femtocells were proposed for Long Term Evolution (LTE) for indoor coverage. It is achieved using access points by home users. However, co-channel interference is a serious issue with femtocells that may dramatically reduce the performance of femto and macrocells. The system capacity and throughput decreases. As femtocells use the same spectrum as the macrocells, and the femtocells are deployed without proper planning, interference from femtocells to macrocells becomes a major issue. In this thesis, the interference from femtocells to macrocells is studied and a solution for the mitigation of this kind of interference is suggested using FFR mechanism. In our proposed scheme for interference avoidance, femtocells use those frequency sub bands which are currently not being used within the macrocell, the process of assigning the frequency bands is based on FFR. The simulation results suggest that the suggested technique enhances total/edge throughputs, and optimizes the SINR and CDF of femtocells users (FUEs) and reduces the outage probability of the network
    corecore