683 research outputs found

    Ultra wideband: applications, technology and future perspectives

    Get PDF
    Ultra Wide Band (UWB) wireless communications offers a radically different approach to wireless communication compared to conventional narrow band systems. Global interest in the technology is huge. This paper reports on the state of the art of UWB wireless technology and highlights key application areas, technological challenges, higher layer protocol issues, spectrum operating zones and future drivers. The majority of the discussion focuses on the state of the art of UWB technology as it is today and in the near future

    Weighted Max-Min Resource Allocation for Frequency Selective Channels

    Full text link
    In this paper, we discuss the computation of weighted max-min rate allocation using joint TDM/FDM strategies under a PSD mask constraint. We show that the weighted max-min solution allocates the rates according to a predetermined rate ratio defined by the weights, a fact that is very valuable for telecommunication service providers. Furthermore, we show that the problem can be efficiently solved using linear programming. We also discuss the resource allocation problem in the mixed services scenario where certain users have a required rate, while the others have flexible rate requirements. The solution is relevant to many communication systems that are limited by a power spectral density mask constraint such as WiMax, Wi-Fi and UWB

    Optimal energy efficiency link adaptation in IEEE 802.15.6 IR-UWB body area networks

    Full text link
    © 2014 IEEE. We propose a novel link adaptation mechanism to maximize energy efficiency in IEEE 802.15.6 impulse radio ultra wideband (IR-UWB) wireless body area networks (WBANs). We consider noncoherent energy detection and autocorrelation receivers, suitable for low complexity implementations. The amount of captured energy is first modeled for the on-body WBAN channel. Using our energy capture model and Gaussian approximations for the decision statistic, the error performance of various physical layer modes of the IEEE 802.15.6 standard is derived assuming intra-symbol interference. We refer to the IEEE 802.15.6 specification as a use case. The proposed adaptation scheme can be applied to any other IR-UWB system with noncoherent receivers and is based on the estimated signal to noise ratio and the channel's energy capture index for which we propose unbiased estimators

    Beyond 5G Wireless IRT for Industry 4.0:Design Principles and Spectrum Aspects

    Get PDF

    UWB MAC Design Constraints and Considerations

    Get PDF
    In this paper, we consider the possibility of developing an optimal medium access control (MAC)layer for high data rate ultra-wideband (UWB) transmission systems that transmit minimal power. MAC in UWB wireless networks is required to coordinate channel access among competing devices. The unique UWB characteristics offer great challenges and opportunities in effective UWB MAC design. We first study the background of UWB and available MAC protocols that have been used in UWB. Secondly, we explore the constraints on UWB MAC design. Finally we present the considerations that need to be made in designing an optimal UWB MAC protocol

    High-Speed Wireless Personal Area Networks: An Application of UWB Technologies

    Get PDF

    Chapter UWB Cognitive Radios

    Get PDF
    Management & management technique

    A General Framework for Analyzing, Characterizing, and Implementing Spectrally Modulated, Spectrally Encoded Signals

    Get PDF
    Fourth generation (4G) communications will support many capabilities while providing universal, high speed access. One potential enabler for these capabilities is software defined radio (SDR). When controlled by cognitive radio (CR) principles, the required waveform diversity is achieved via a synergistic union called CR-based SDR. Research is rapidly progressing in SDR hardware and software venues, but current CR-based SDR research lacks the theoretical foundation and analytic framework to permit efficient implementation. This limitation is addressed here by introducing a general framework for analyzing, characterizing, and implementing spectrally modulated, spectrally encoded (SMSE) signals within CR-based SDR architectures. Given orthogonal frequency division multiplexing (OFDM) is a 4G candidate signal, OFDM-based signals are collectively classified as SMSE since modulation and encoding are spectrally applied. The proposed framework provides analytic commonality and unification of SMSE signals. Applicability is first shown for candidate 4G signals, and resultant analytic expressions agree with published results. Implementability is then demonstrated in multiple coexistence scenarios via modeling and simulation to reinforce practical utility
    • …
    corecore