147,117 research outputs found

    A complete O(alpha_S^2) calculation of the signal-background interference for the Higgs diphoton decay channel

    Full text link
    We present the full {\cal O}(\as^2) computation of the interference effects between the Higgs diphoton signal and the continuum background at the LHC. While the main contribution to the interference originates on the gggg partonic subprocess, we find that the corrections from the qgqg and qqˉq\bar{q} channels amount up to 35% of it. We discuss the effect of these new subprocesses in the shift of the diphoton invariant mass peak recently reported by S. Martin in Ref.\cite{Martin:2012xc}.Comment: 8 pages, 5 figure

    On the computation of finite bottom-quark mass effects in Higgs boson production

    Get PDF
    We present analytic results for the partonic cross-sections contributing to the top-bottom interference in Higgs production via gluon fusion at hadron colliders at NLO accuracy in QCD. We develop a method of expansion in small bottom-mass for master integrals and combine it with the usual infinite top-mass effective theory. Our method of expansion admits a simple algorithmic description and can be easily generalized to any small parameter. These results for the integrated cross-sections will be needed in the computation of the renormalization counter-terms entering the computation of finite bottom-quark mass effects at NNLO.Comment: Updated affiliations and abstract, added reference, and corrected minor typo

    Efficient high-fidelity quantum computation using matter qubits and linear optics

    Full text link
    We propose a practical, scalable, and efficient scheme for quantum computation using spatially separated matter qubits and single photon interference effects. The qubit systems can be NV-centers in diamond, Pauli-blockade quantum dots with an excess electron or trapped ions with optical transitions, which are each placed in a cavity and subsequently entangled using a double-heralded single-photon detection scheme. The fidelity of the resulting entanglement is extremely robust against the most important errors such as detector loss, spontaneous emission, and mismatch of cavity parameters. We demonstrate how this entangling operation can be used to efficiently generate cluster states of many qubits, which, together with single qubit operations and readout, can be used to implement universal quantum computation. Existing experimental parameters indicate that high fidelity clusters can be generated with a moderate constant overhead.Comment: 5 pages, 3 figures, broader introduction and improved scalability of cluster state generatio

    Quantum Computation as a Dynamical Process

    Get PDF
    In this paper, we discuss the dynamical issues of quantum computation. We demonstrate that fast wave function oscillations can affect the performance of Shor's quantum algorithm by destroying required quantum interference. We also show that this destructive effect can be routinely avoided by using resonant-pulse techniques. We discuss the dynamics of resonant pulse implementations of quantum logic gates in Ising spin systems. We also discuss the influence of non-resonant excitations. We calculate the range of parameters where undesirable non-resonant effects can be minimized. Finally, we describe the ``2Ď€k2\pi k-method'' which avoids the detrimental deflection of non-resonant qubits.Comment: 13 pages, 1 column, no figure

    Vector boson production at hadron colliders: a fully exclusive QCD calculation at NNLO

    Get PDF
    We consider QCD radiative corrections to the production of W and Z bosons in hadron collisions. We present a fully exclusive calculation up to next-to-next-to-leading order (NNLO) in QCD perturbation theory. To perform this NNLO computation, we use a recently proposed version of the subtraction formalism. The calculation includes the gamma-Z interference, finite-width effects, the leptonic decay of the vector bosons and the corresponding spin correlations. Our calculation is implemented in a parton level Monte Carlo program. The program allows the user to apply arbitrary kinematical cuts on the final-state leptons and the associated jet activity, and to compute the corresponding distributions in the form of bin histograms. We show selected numerical results at the Tevatron and the LHC.Comment: 7 pages, 3 ps figure

    Higgs production in association with bottom quarks

    Get PDF
    We study the production of a Higgs boson in association with bottom quarks in hadronic collisions, and present phenomenological predictions relevant to the 13 TeV LHC. Our results are accurate to the next-to-leading order in QCD, and matched to parton showers through the MC@NLO method; thus, they are fully differential and based on unweighted events, which we shower by using both Herwig++ and Pythia8. We perform the computation in both the four-flavour and the five-flavour schemes, whose results we compare extensively at the level of exclusive observables. In the case of the Higgs transverse momentum, we also consider the analytically-resummed cross section up to the NNLO+NNLL accuracy. In addition, we analyse at O(αS3){\cal O}(\alpha_S^3) the effects of the interference between the bbˉHb\bar{b}H and gluon-fusion production modes.Comment: 33 pages, 17 figure
    • …
    corecore