4 research outputs found

    Evaluation of 5G Coexistence and Interference Signals in the C-Band Satellite Earth Station

    Get PDF
    Fixed Satellite Services (FSS) used to be alone at the C-Band spectrum in most countries. Since the deployment of 5G in many countries (i.e., 3.3 - 3.6GHz), FSS is not the exclusive system in the C-Band anymore. In order to minimize the detrimental interference for the FSS to allowable levels, regional exclusion zones of maximum radiated power in 5G base stations (BS) are proposed and evaluated. In this paper, a measurement campaign has been carried out, and an analysis of the interference has been studied. A filtering model, namely Filter to Remove Broadband Interference 5G (FIREBRING), is proposed and analyzed concerning the carrier-to-noise ratio (C/N). Moreover, this paper focuses on the evaluation of the 5G interference into the FSS. The proposed solution deployed an Low-Noise Block (LNB) with a band frequency of 3.7 to 4.2GHz to test the satellite down-conversion signal at the receiver. The paper offered a complete analysis of the 5G signal, taking into account the implications of out-of-band emissions, potentially LNB saturation into FSS receiver, and the repercussions of the deployment of the 5G BS active antenna systems. With the LNB and down-converter in place, it can be found that the signal interference between 1.450GHz and 1.550GHz, is nearly 18dB

    Cellular Wireless Networks in the Upper Mid-Band

    Full text link
    The upper mid-band -- roughly from 7 to 24 GHz -- has attracted considerable recent interest for new cellular services. This frequency range has vastly more spectrum than the highly congested bands below 7 GHz while offering more favorable propagation and coverage than the millimeter wave (mmWave) frequencies. Realizing the full potential of these bands, however, will require fundamental changes to the design of cellular systems. Most importantly, spectrum will likely need to be shared with incumbents including communication satellites, military RADAR, and radio astronomy. Also, due to the wide bandwidth, directional nature of transmission, and intermittent occupancy of incumbents, cellular systems will need to be agile to sense and intelligently use large spatial and bandwidth degrees of freedom. This paper attempts to provide an initial assessment of the feasibility and potential gains of wideband cellular systems operating in the upper mid-band. The study includes: (1) a system study to assess potential gains of multi-band systems in a representative dense urban environment; (2) propagation calculations to assess potential cross interference between satellites and terrestrial cellular services; and (3) design and evaluation of a compact multi-band antenna array structure. Leveraging these preliminary results, we identify potential future research directions to realize next-generation systems in these frequencies.Comment: 11 page

    Modeling Interference for the Coexistence of 6G Networks and Passive Sensing Systems

    Full text link
    Future wireless networks and sensing systems will benefit from access to large chunks of spectrum above 100 GHz, to achieve terabit-per-second data rates in 6th Generation (6G) cellular systems and improve accuracy and reach of Earth exploration and sensing and radio astronomy applications. These are extremely sensitive to interference from artificial signals, thus the spectrum above 100 GHz features several bands which are protected from active transmissions under current spectrum regulations. To provide more agile access to the spectrum for both services, active and passive users will have to coexist without harming passive sensing operations. In this paper, we provide the first, fundamental analysis of Radio Frequency Interference (RFI) that large-scale terrestrial deployments introduce in different satellite sensing systems now orbiting the Earth. We develop a geometry-based analysis and extend it into a data-driven model which accounts for realistic propagation, building obstruction, ground reflection, for network topology with up to 10510^5 nodes in more than 8585 km2^2. We show that the presence of harmful RFI depends on several factors, including network load, density and topology, satellite orientation, and building density. The results and methodology provide the foundation for the development of coexistence solutions and spectrum policy towards 6G
    corecore