600 research outputs found

    Interference Alignment Through User Cooperation for Two-cell MIMO Interfering Broadcast Channels

    Full text link
    This paper focuses on two-cell multiple-input multiple-output (MIMO) Gaussian interfering broadcast channels (MIMO-IFBC) with KK cooperating users on the cell-boundary of each BS. It corresponds to a downlink scenario for cellular networks with two base stations (BSs), and KK users equipped with Wi-Fi interfaces enabling to cooperate among users on a peer-to-peer basis. In this scenario, we propose a novel interference alignment (IA) technique exploiting user cooperation. Our proposed algorithm obtains the achievable degrees of freedom (DoF) of 2K when each BS and user have M=K+1M=K+1 transmit antennas and N=KN=K receive antennas, respectively. Furthermore, the algorithm requires only a small amount of channel feedback information with the aid of the user cooperation channels. The simulations demonstrate that not only are the analytical results valid, but the achievable DoF of our proposed algorithm also outperforms those of conventional techniques.Comment: This paper will appear in IEEE GLOBECOM 201

    Interference Alignment with Limited Feedback on Two-cell Interfering Two-User MIMO-MAC

    Full text link
    In this paper, we consider a two-cell interfering two-user multiple-input multiple-output multiple access channel (MIMO-MAC) with limited feedback. We first investigate the multiplexing gain of such channel when users have perfect channel state information at transmitter (CSIT) by exploiting an interference alignment scheme. In addition, we propose a feedback framework for the interference alignment in the limited feedback system. On the basis of the proposed feedback framework, we analyze the rate gap loss and it is shown that in order to keep the same multiplexing gain with the case of perfect CSIT, the number of feedback bits per receiver scales as Bβ‰₯(Mβ€‰β£βˆ’1 ⁣) ⁣log⁑2(SNR)+CB \geq (M\!-1\!)\!\log_{2}(\textsf{SNR})+C, where MM and CC denote the number of transmit antennas and a constant, respectively. Throughout the simulation results, it is shown that the sum-rate performance coincides with the derived results.Comment: 6 pages, 2 figures, Submitted ICC 201

    Degrees of Freedom of Uplink-Downlink Multiantenna Cellular Networks

    Full text link
    An uplink-downlink two-cell cellular network is studied in which the first base station (BS) with M1M_1 antennas receives independent messages from its N1N_1 serving users, while the second BS with M2M_2 antennas transmits independent messages to its N2N_2 serving users. That is, the first and second cells operate as uplink and downlink, respectively. Each user is assumed to have a single antenna. Under this uplink-downlink setting, the sum degrees of freedom (DoF) is completely characterized as the minimum of (N1N2+min⁑(M1,N1)(N1βˆ’N2)++min⁑(M2,N2)(N2βˆ’N1)+)/max⁑(N1,N2)(N_1N_2+\min(M_1,N_1)(N_1-N_2)^++\min(M_2,N_2)(N_2-N_1)^+)/\max(N_1,N_2), M1+N2,M2+N1M_1+N_2,M_2+N_1, max⁑(M1,M2)\max(M_1,M_2), and max⁑(N1,N2)\max(N_1,N_2), where a+a^+ denotes max⁑(0,a)\max(0,a). The result demonstrates that, for a broad class of network configurations, operating one of the two cells as uplink and the other cell as downlink can strictly improve the sum DoF compared to the conventional uplink or downlink operation, in which both cells operate as either uplink or downlink. The DoF gain from such uplink-downlink operation is further shown to be achievable for heterogeneous cellular networks having hotspots and with delayed channel state information.Comment: 22 pages, 11 figures, in revision for IEEE Transactions on Information Theor

    Retrospective Interference Alignment for Two-Cell Uplink MIMO Cellular Networks with Delayed CSIT

    Full text link
    In this paper, we propose a new retrospective interference alignment for two-cell multiple-input multiple-output (MIMO) interfering multiple access channels (IMAC) with the delayed channel state information at the transmitters (CSIT). It is shown that having delayed CSIT can strictly increase the sum-DoF compared to the case of no CSIT. The key idea is to align multiple interfering signals from adjacent cells onto a small dimensional subspace over time by fully exploiting the previously received signals as side information with outdated CSIT in a distributed manner. Remarkably, we show that the retrospective interference alignment can achieve the optimal sum-DoF in the context of two-cell two-user scenario by providing a new outer bound.Comment: 7 pages, 2 figures, to appear in IEEE ICC 201

    Elements of Cellular Blind Interference Alignment --- Aligned Frequency Reuse, Wireless Index Coding and Interference Diversity

    Full text link
    We explore degrees of freedom (DoF) characterizations of partially connected wireless networks, especially cellular networks, with no channel state information at the transmitters. Specifically, we introduce three fundamental elements --- aligned frequency reuse, wireless index coding and interference diversity --- through a series of examples, focusing first on infinite regular arrays, then on finite clusters with arbitrary connectivity and message sets, and finally on heterogeneous settings with asymmetric multiple antenna configurations. Aligned frequency reuse refers to the optimality of orthogonal resource allocations in many cases, but according to unconventional reuse patterns that are guided by interference alignment principles. Wireless index coding highlights both the intimate connection between the index coding problem and cellular blind interference alignment, as well as the added complexity inherent to wireless settings. Interference diversity refers to the observation that in a wireless network each receiver experiences a different set of interferers, and depending on the actions of its own set of interferers, the interference-free signal space at each receiver fluctuates differently from other receivers, creating opportunities for robust applications of blind interference alignment principles
    • …
    corecore