3,885 research outputs found

    The Switched Local Area Networks’ Delay Problem: Issues and a Deterministic Solution Approach

    Get PDF
    A large number of installed local area networks are sluggish in terms of speed of uploading and down- loading of information. Researchers have, therefore, proposed the need for such networks to be designed with specified maximum end-to-end delay. This is because, if the maximum packet delay between any two nodes of a network is not known, it is impossible to provide a deterministic guarantee of worst case response times of packets’ flows. Therefore, the need for analytic and formal basis for designing such networks becomes very imperative. In this regard, this chapter has discussed the switched local area networks’ delay problem and related issues. It compared the two principal approaches for determining the end-to-end response times of flows in communication networks – stochastic approach and determin- istic approach. The chapter goes on to demonstrate the superiority of the latter approach by using it to develop and validate the goodness of a general maximum delay packet switch model

    On-board processing satellite network architecture and control study

    Get PDF
    For satellites to remain a vital part of future national and international communications, system concepts that use their inherent advantages to the fullest must be created. Network architectures that take maximum advantage of satellites equipped with onboard processing are explored. Satellite generations must accommodate various services for which satellites constitute the preferred vehicle of delivery. Such services tend to be those that are widely dispersed and present thin to medium loads to the system. Typical systems considered are thin and medium route telephony, maritime, land and aeronautical radio, VSAT data, low bit rate video teleconferencing, and high bit rate broadcast of high definition video. Delivery of services by TDMA and FDMA multiplexing techniques and combinations of the two for individual and mixed service types are studied. The possibilities offered by onboard circuit switched and packet switched architectures are examined and the results strongly support a preference for the latter. A detailed design architecture encompassing the onboard packet switch and its control, the related demand assigned TDMA burst structures, and destination packet protocols for routing traffic are presented. Fundamental onboard hardware requirements comprising speed, memory size, chip count, and power are estimated. The study concludes with identification of key enabling technologies and identifies a plan to develop a POC model

    Interfacing methodologies for IP re-use in reconfigurable system-on-chip

    Get PDF
    Initially, IP cores in Systems-on-Chip were interconnected through custom interface logic. The more recent use of standard on-chip buses has eased integration and eliminated inefficient glue logic, and hence boosted the production of IP functional cores. However, once an IP block is designed to target a particular on-chip bus standard, retargeting to a different bus is time-consuming and tedious. As new bus standards are introduced and different interconnection methods are proposed, this problem increases. Many solutions have been proposed, however these solutions either limit the IP block performance or are restricted to a particular platform. A new methodology is presented that can automate the connection of an IP block to a wide variety of interface architectures with low overhead through the use a special Interface Adaptor Logic layer

    Optical label-controlled transparent metro-access network interface

    Get PDF

    Energy-efficient wireless communication

    Get PDF
    In this chapter we present an energy-efficient highly adaptive network interface architecture and a novel data link layer protocol for wireless networks that provides Quality of Service (QoS) support for diverse traffic types. Due to the dynamic nature of wireless networks, adaptations in bandwidth scheduling and error control are necessary to achieve energy efficiency and an acceptable quality of service. In our approach we apply adaptability through all layers of the protocol stack, and provide feedback to the applications. In this way the applications can adapt the data streams, and the network protocols can adapt the communication parameters

    3G telecommunication technology in Malaysia

    Get PDF
    3G is the third generation of mobile phone standards and technology, after 2G. It is based on the International Telecommunication Union (ITU) family of standards under the International Mobile Telecommunications programme, "IMT- 2000". 3G technologies enable network operators to offer users a wider range of more advanced services while achieving greater network capacity through improved spectral efficiency. Services include wide-area wireless voice telephony and broadband wireless data, all in a mobile environment. Typically, they provide service at 5-10 Mb per second

    Distributed computing system with dual independent communications paths between computers and employing split tokens

    Get PDF
    This is a distributed computing system providing flexible fault tolerance; ease of software design and concurrency specification; and dynamic balance of the loads. The system comprises a plurality of computers each having a first input/output interface and a second input/output interface for interfacing to communications networks each second input/output interface including a bypass for bypassing the associated computer. A global communications network interconnects the first input/output interfaces for providing each computer the ability to broadcast messages simultaneously to the remainder of the computers. A meshwork communications network interconnects the second input/output interfaces providing each computer with the ability to establish a communications link with another of the computers bypassing the remainder of computers. Each computer is controlled by a resident copy of a common operating system. Communications between respective ones of computers is by means of split tokens each having a moving first portion which is sent from computer to computer and a resident second portion which is disposed in the memory of at least one of computer and wherein the location of the second portion is part of the first portion. The split tokens represent both functions to be executed by the computers and data to be employed in the execution of the functions. The first input/output interfaces each include logic for detecting a collision between messages and for terminating the broadcasting of a message whereby collisions between messages are detected and avoided
    • …
    corecore