6,499 research outputs found

    Understanding best practices in control engineering education using the concept of TPACK

    Get PDF
    This study aimed to design an integrated pedagogical approach to advance introductory Process Control Engineering Education through the application of the Technological Pedagogical Content Knowledge (TPACK) framework, and evaluating its impact on student learning. The research is initially being undertaken at Nottingham Trent University, UK but we will next adapt it to a case study in Libya. This paper aims to strengthen the teaching of introductory Process Control by using appropriate approach es in universities to improve the learning outcomes for students. From this work a new schematic for teaching Process Control ha s be en developed and, moreover, a thoughtful best practice in introducing Process Control in engineering education can be developed

    Understanding and Design of an Arduino-based PID Controller

    Get PDF
    This thesis presents research and design of a Proportional, Integral, and Derivative (PID) controller that uses a microcontroller (Arduino) platform. The research part discusses the structure of a PID algorithm with some motivating work already performed with the Arduino-based PID controller from various fields. An inexpensive Arduino-based PID controller designed in the laboratory to control the temperature, consists of hardware parts: Arduino UNO, thermoelectric cooler, and electronic components while the software portion includes C/C++ programming. The PID parameters for a particular controller are found manually. The role of different PID parameters is discussed with the subsequent comparison between different modes of PID controllers. The designed system can effectively measure the temperature with an error of ± 0.6℃ while a stable temperature control with only slight deviation from the desired value (setpoint) is achieved. The designed system and concepts learned from the control system serve in pursuing inexpensive and precise ways to control physical parameters within a desired range in our laboratory

    European White Book on Real-Time Power Hardware in the Loop Testing : DERlab Report No. R- 005.0

    Get PDF
    The European White Book on Real-Time-Powerhardware-in-the-Loop testing is intended to serve as a reference document on the future of testing of electrical power equipment, with speciïŹ c focus on the emerging hardware-in-the-loop activities and application thereof within testing facilities and procedures. It will provide an outlook of how this powerful tool can be utilised to support the development, testing and validation of speciïŹ cally DER equipment. It aims to report on international experience gained thus far and provides case studies on developments and speciïŹ c technical issues, such as the hardware/software interface. This white book compliments the already existing series of DERlab European white books, covering topics such as grid-inverters and grid-connected storag

    Automated NDT inspection for large and complex geometries of composite materials

    Get PDF
    Large components with complex geometries, made of composite materials, have become very common in modern structures. To cope with future demand projections, it is necessary to overcome the current non-destructive testing (NDT) bottlenecks encountered during the inspection phase of manufacture. This thesis investigates several aspects of the introduction of automation within the inspection process of complex parts. The use of six-axis robots for product inspection and non-destructive testing systems is the central investigation of this thesis. The challenges embraced by the research include the development of a novel controlling approach for robotic manipulators and of novel path-planning strategies. The integration of robot manipulators and NDT data acquisition instruments is optimized. An effective and reliable way to encode the NDT data through the interpolated robot feedback positions is implemented. The viability of the new external control method is evaluated experimentally. The observed maximum position and orientation errors are respectively within 2mm and within 1 degree, over an operating envelope of 3mÂł. A new software toolbox (RoboNDT), aimed at NDT technicians, has been developed during this work. RoboNDT is intended to transform the robot path-planning problem into an easy step of the inspection process. The software incorporates the novel path-planning algorithms developed during this research and is shaped to overcome practical limitations of current OLP software. The software has been experimentally validated using scans on real high value aerospace components. RoboNDT delivers tool-path errors that are lower than the errors given by commercial off-line path-planning software. For example the variability of the standoff is within 10 mm for the tool-paths created with the commercial software and within 4.5 mm for the RoboNDT tool-paths, over a scanned area of 1.6mÂČ. The output of this research was used to support a 3-year industrial project, called IntACom and led by TWI on behalf of major aerospace sponsors. The result is a demonstrator system, currently in use at TWI Technology Centre, which is capable of inspecting complex geometries with high throughput. The IntACom system can scan real components 2.8 times faster than traditional 3-DoF scanners deploying phased-array inspection and 6.7 times faster than commercial gantry systems deploying traditional single-element inspection.Large components with complex geometries, made of composite materials, have become very common in modern structures. To cope with future demand projections, it is necessary to overcome the current non-destructive testing (NDT) bottlenecks encountered during the inspection phase of manufacture. This thesis investigates several aspects of the introduction of automation within the inspection process of complex parts. The use of six-axis robots for product inspection and non-destructive testing systems is the central investigation of this thesis. The challenges embraced by the research include the development of a novel controlling approach for robotic manipulators and of novel path-planning strategies. The integration of robot manipulators and NDT data acquisition instruments is optimized. An effective and reliable way to encode the NDT data through the interpolated robot feedback positions is implemented. The viability of the new external control method is evaluated experimentally. The observed maximum position and orientation errors are respectively within 2mm and within 1 degree, over an operating envelope of 3mÂł. A new software toolbox (RoboNDT), aimed at NDT technicians, has been developed during this work. RoboNDT is intended to transform the robot path-planning problem into an easy step of the inspection process. The software incorporates the novel path-planning algorithms developed during this research and is shaped to overcome practical limitations of current OLP software. The software has been experimentally validated using scans on real high value aerospace components. RoboNDT delivers tool-path errors that are lower than the errors given by commercial off-line path-planning software. For example the variability of the standoff is within 10 mm for the tool-paths created with the commercial software and within 4.5 mm for the RoboNDT tool-paths, over a scanned area of 1.6mÂČ. The output of this research was used to support a 3-year industrial project, called IntACom and led by TWI on behalf of major aerospace sponsors. The result is a demonstrator system, currently in use at TWI Technology Centre, which is capable of inspecting complex geometries with high throughput. The IntACom system can scan real components 2.8 times faster than traditional 3-DoF scanners deploying phased-array inspection and 6.7 times faster than commercial gantry systems deploying traditional single-element inspection

    Environmental test chamber for the support of learning and teaching in intelligent control

    Get PDF
    The paper describes the utility of a low cost, 1 m2 by 2 m forced ventilation, micro-climate test chamber, for the support of research and teaching in mechatronics. Initially developed for the evaluation of a new ventilation rate controller, the fully instrumented chamber now provides numerous learning opportunities and individual projects for both undergraduate and postgraduate research students

    Performance comparison between PID and fuzzy logic controller in position control system of dc servomotor

    Get PDF
    The objective of this paper is to compare the time specification performance between conventional controller and artificial intelligence controller in position control system of a DC motor. This will include design and development of a GUI software using Microsoft Visual Basic 6.0 for position control system experiment. The scope of this research is to apply direct digital control technique in position control system. Two types of controller namely PID and fuzzy logic controller will be used to control the output response. An interactive software will be developed to visualize and analyze the system. This project consists of hardware equipment and software design. The hardware parts involve in interfacing MS150 Modular servo System and Data Acquisition System with a personal computer. The software part includes programming real-time software using Microsoft Visual Basic 6.0. Finally, the software will be integrated with hardware to produce a GUI position control system

    Advanced laboratory testing methods using real-time simulation and hardware-in-the-loop techniques : a survey of smart grid international research facility network activities

    Get PDF
    The integration of smart grid technologies in interconnected power system networks presents multiple challenges for the power industry and the scientific community. To address these challenges, researchers are creating new methods for the validation of: control, interoperability, reliability of Internet of Things systems, distributed energy resources, modern power equipment for applications covering power system stability, operation, control, and cybersecurity. Novel methods for laboratory testing of electrical power systems incorporate novel simulation techniques spanning real-time simulation, Power Hardware-in-the-Loop, Controller Hardware-in-the-Loop, Power System-in-the-Loop, and co-simulation technologies. These methods directly support the acceleration of electrical systems and power electronics component research by validating technological solutions in high-fidelity environments. In this paper, members of the Survey of Smart Grid International Research Facility Network task on Advanced Laboratory Testing Methods present a review of methods, test procedures, studies, and experiences employing advanced laboratory techniques for validation of range of research and development prototypes and novel power system solutions

    Generalised sensor linearisation and calibration

    Get PDF
    The aim of this work was to conduct a survey of current sensor measurement technologies and investigate sensor linearisation, cahbration and compensation methods m order to determine the methods most suitable for generic embedded sensor implementation. The thesis contains a comprehensive survey of sensor technologies and their interfacing requirements as a prerequisite for determining modules required by the generic embedded sensor interface. Different linearisation and calibration techmques are investigated and the most promising techniques, curve fitting and progressive polynomial calibration method, are then examined in greater detail and simulations performed to compare their performance. The fundamental limitations and trade offs in design and implementation on the microprocessor of these methods are studied. The design of the compensation module is also presented and its implementation on the microprocessor m the form of the C code is described. All methods are tested and implemented on a PIC microcontroller as a part of linearisation, cahbration and compensation module of the generic embedded sensor interface

    State of the Art Smart Grid Laboratories - A Survey about Software Use:RTLabOS D1.2

    Get PDF

    Enhancement of Power Quality in Grid Connected Photovoltaic System Using Predictive Current Control Technique

    Get PDF
    Now- a days the increased use of power electronic devices has resulted in power quality problems such as voltage sag, swell, harmonics and voltage flicker. Non-linear loads affect system power quality. PV systems are grid connected via an interfacing converter. Single phase shunt active power filter (APF) can be used to develop the power quality in terms of current harmonic mitigation and reactive power compensation. In this paper a PV interfacing inverter which acts as a shunt an APF is controlled using predictive current control (PCC) technique for current harmonics mitigation. The MATLAB Simulink model is used to study the performance of system
    • 

    corecore