8,354 research outputs found

    A meta level to LAG for adaptation language re-use

    Get PDF
    Recently, a growing body of research targets authoring of content and adaptation strategies for adaptive systems. The driving force behind it is semantics-based reuse: the same adaptation strategy can be used for various domains, and vice versa. E.g., a Java course can be taught via a strategy differentiating between beginner and advanced users, or between visual versus verbal users. Whilst using an Adaptation Language (LAG) to express reusable adaptation strategies, we noticed, however, that: a) the created strategies have common patterns that, themselves, could be reused; b) templates based on these patterns could reduce the designers' work; c) there is a strong preference towards XML-based processing and interfacing. This has lead us to define a new meta-language for the LAG Adaptation Language, facilitating the extraction of common design patterns. This paper provides more insight into the LAG language, as well as describes this meta-language, and shows how introducing it can overcome some redundancy issues

    Development of Economic Water Usage Sensor and Cyber-Physical Systems Co-Simulation Platform for Home Energy Saving

    Get PDF
    In this thesis, two Cyber-Physical Systems (CPS) approaches were considered to reduce residential building energy consumption. First, a flow sensor was developed for residential gas and electric storage water heaters. The sensor utilizes unique temperature changes of tank inlet and outlet pipes upon water draw to provide occupant hot water usage. Post processing of measured pipe temperature data was able to detect water draw events. Conservation of energy was applied to heater pipes to determine relative internal water flow rate based on transient temperature measurements. Correlations between calculated flow and actual flow were significant at a 95% confidence level. Using this methodology, a CPS water heater controller can activate existing residential storage water heaters according to occupant hot water demand. The second CPS approach integrated an open-source building simulation tool, EnergyPlus, into a CPS simulation platform developed by the National Institute of Standards and Technology (NIST). The NIST platform utilizes the High Level Architecture (HLA) co-simulation protocol for logical timing control and data communication. By modifying existing EnergyPlus co-simulation capabilities, NIST’s open-source platform was able to execute an uninterrupted simulation between a residential house in EnergyPlus and an externally connected thermostat controller. The developed EnergyPlus wrapper for HLA co-simulation can allow active replacement of traditional real-time data collection for building CPS development. As such, occupant sensors and simple home CPS product can allow greater residential participation in energy saving practices, saving up to 33% on home energy consumption nationally

    Industrial-Strength Documentation for ACL2

    Full text link
    The ACL2 theorem prover is a complex system. Its libraries are vast. Industrial verification efforts may extend this base with hundreds of thousands of lines of additional modeling tools, specifications, and proof scripts. High quality documentation is vital for teams that are working together on projects of this scale. We have developed XDOC, a flexible, scalable documentation tool for ACL2 that can incorporate the documentation for ACL2 itself, the Community Books, and an organization's internal formal verification projects, and which has many features that help to keep the resulting manuals up to date. Using this tool, we have produced a comprehensive, publicly available ACL2+Books Manual that brings better documentation to all ACL2 users. We have also developed an extended manual for use within Centaur Technology that extends the public manual to cover Centaur's internal books. We expect that other organizations using ACL2 will wish to develop similarly extended manuals.Comment: In Proceedings ACL2 2014, arXiv:1406.123

    MonALISA : A Distributed Monitoring Service Architecture

    Full text link
    The MonALISA (Monitoring Agents in A Large Integrated Services Architecture) system provides a distributed monitoring service. MonALISA is based on a scalable Dynamic Distributed Services Architecture which is designed to meet the needs of physics collaborations for monitoring global Grid systems, and is implemented using JINI/JAVA and WSDL/SOAP technologies. The scalability of the system derives from the use of multithreaded Station Servers to host a variety of loosely coupled self-describing dynamic services, the ability of each service to register itself and then to be discovered and used by any other services, or clients that require such information, and the ability of all services and clients subscribing to a set of events (state changes) in the system to be notified automatically. The framework integrates several existing monitoring tools and procedures to collect parameters describing computational nodes, applications and network performance. It has built-in SNMP support and network-performance monitoring algorithms that enable it to monitor end-to-end network performance as well as the performance and state of site facilities in a Grid. MonALISA is currently running around the clock on the US CMS test Grid as well as an increasing number of other sites. It is also being used to monitor the performance and optimize the interconnections among the reflectors in the VRVS system.Comment: Talk from the 2003 Computing in High Energy and Nuclear Physics (CHEP03), La Jolla, Ca, USA, March 2003, 8 pages, pdf. PSN MOET00

    Performance evaluation of a distributed integrative architecture for robotics

    Get PDF
    The eld of robotics employs a vast amount of coupled sub-systems. These need to interact cooperatively and concurrently in order to yield the desired results. Some hybrid algorithms also require intensive cooperative interactions internally. The architecture proposed lends it- self amenable to problem domains that require rigorous calculations that are usually impeded by the capacity of a single machine, and incompatibility issues between software computing elements. Implementations are abstracted away from the physical hardware for ease of de- velopment and competition in simulation leagues. Monolithic developments are complex, and the desire for decoupled architectures arises. Decoupling also lowers the threshold for using distributed and parallel resources. The ability to re-use and re-combine components on de- mand, therefore is essential, while maintaining the necessary degree of interaction. For this reason we propose to build software components on top of a Service Oriented Architecture (SOA) using Web Services. An additional bene t is platform independence regarding both the operating system and the implementation language. The robot soccer platform as well as the associated simulation leagues are the target domain for the development. Furthermore are machine vision and remote process control related portions of the architecture currently in development and testing for industrial environments. We provide numerical data based on the Python frameworks ZSI and SOAPpy undermining the suitability of this approach for the eld of robotics. Response times of signi cantly less than 50 ms even for fully interpreted, dynamic languages provides hard information showing the feasibility of Web Services based SOAs even in time critical robotic applications

    Autonomous Observations in Antarctica with AMICA

    Full text link
    The Antarctic Multiband Infrared Camera (AMICA) is a double channel camera operating in the 2-28 micron infrared domain (KLMNQ bands) that will allow to characterize and exploit the exceptional advantages for Astronomy, expected from Dome C in Antarctica. The development of the camera control system is at its final stage. After the investigation of appropriate solutions against the critical environment, a reliable instrumentation has been developed. It is currently being integrated and tested to ensure the correct execution of automatic operations. Once it will be mounted on the International Robotic Antarctic Infrared Telescope (IRAIT), AMICA and its equipment will contribute to the accomplishment of a fully autonomous observatory.Comment: 12 pages, 4 figures, Advances in Astronomy Journal, Special Issue "Robotic Astronomy", Accepted 11 February 201
    • …
    corecore