222,870 research outputs found

    Excess free volume and structural properties of inert gas condensation synthesized nanoparticles based CuZr nanoglasses

    Get PDF
    Nanoglass (NG) as a new structure-tunable material has been investigated using both experiments and computational modeling. Experimentally, inert gas condensation (IGC) is commonly employed to prepare metallic glass (MG) nanoparticles that are consolidated using cold compression to generate an NG. In computational modeling, various methods have been used to generate NGs. However, due to the high computational cost involved, heretofore modeling investigations have not followed the experimental synthesis route. In this work, we use molecular dynamics simulations to generate an NG model by consolidating IGC-prepared Cu(64)Zr(36) nanoparticles following a workflow similar to that of experiments. The resulting structure is compared with those of NGs produced following two alternative procedures previously used: direct generation employing Voronoi tessellation and consolidation of spherical nanoparticles carved from an MG sample. We focus on the characterization of the excess free volume and the Voronoi polyhedral statistics in order to identify and quantify contrasting features of the glass-glass interfaces in the three NG samples prepared using distinct methods. Results indicate that glass-glass interfaces in IGC-based NGs are thicker and display higher structural contrast with their parent MG structure. Nanoparticle-based methods display excess free volume exceeding 4%, in agreement with experiments. IGC-prepared nanoparticles, which display Cu segregation to their surfaces, generate the highest glass-glass interface excess free volume levels and the largest relative interface volume with excess free volume higher than 3%. Voronoi polyhedral analysis indicates a sharp drop in the full icosahedral motif fraction in the glass-glass interfaces in nanoparticle-based NG as compared to their parent MG

    Extended surfaces modulate and can catalyze hydrophobic effects

    Full text link
    Interfaces are a most common motif in complex systems. To understand how the presence of interfaces affect hydrophobic phenomena, we use molecular simulations and theory to study hydration of solutes at interfaces. The solutes range in size from sub-nanometer to a few nanometers. The interfaces are self-assembled monolayers with a range of chemistries, from hydrophilic to hydrophobic. We show that the driving force for assembly in the vicinity of a hydrophobic surface is weaker than that in bulk water, and decreases with increasing temperature, in contrast to that in the bulk. We explain these distinct features in terms of an interplay between interfacial fluctuations and excluded volume effects---the physics encoded in Lum-Chandler-Weeks theory [J. Phys. Chem. B 103, 4570--4577 (1999)]. Our results suggest a catalytic role for hydrophobic interfaces in the unfolding of proteins, for example, in the interior of chaperonins and in amyloid formation.Comment: 22 pages, 5 figure

    Tensile Fracture of Welded Polymer Interfaces: Miscibility, Entanglements and Crazing

    Get PDF
    Large-scale molecular simulations are performed to investigate tensile failure of polymer interfaces as a function of welding time tt. Changes in the tensile stress, mode of failure and interfacial fracture energy GIG_I are correlated to changes in the interfacial entanglements as determined from Primitive Path Analysis. Bulk polymers fail through craze formation, followed by craze breakdown through chain scission. At small tt welded interfaces are not strong enough to support craze formation and fail at small strains through chain pullout at the interface. Once chains have formed an average of about one entanglement across the interface, a stable craze is formed throughout the sample. The failure stress of the craze rises with welding time and the mode of craze breakdown changes from chain pullout to chain scission as the interface approaches bulk strength. The interfacial fracture energy GIG_I is calculated by coupling the simulation results to a continuum fracture mechanics model. As in experiment, GIG_I increases as t1/2t^{1/2} before saturating at the average bulk fracture energy GbG_b. As in previous simulations of shear strength, saturation coincides with the recovery of the bulk entanglement density. Before saturation, GIG_I is proportional to the areal density of interfacial entanglements. Immiscibiltiy limits interdiffusion and thus suppresses entanglements at the interface. Even small degrees of immisciblity reduce interfacial entanglements enough that failure occurs by chain pullout and GI≪GbG_I \ll G_b
    • …
    corecore