17,629 research outputs found

    Model-based groupware solution for distributed real-time collaborative 4D planning via teamwork

    Get PDF
    Construction planning plays a fundamental role in construction project management that requires team working among planners from a diverse range of disciplines and in geographically dispersed working situations. Model-based four-dimensional (4D) computer-aided design (CAD) groupware, though considered a possible approach to supporting collaborative planning, is still short of effective collaborative mechanisms for teamwork due to methodological, technological and social challenges. Targeting this problem, this paper proposes a model-based groupware solution to enable a group of multidisciplinary planners to perform real-time collaborative 4D planning across the Internet. In the light of the interactive definition method, and its computer-supported collaborative work (CSCW) design analysis, the paper discusses the realization of interactive collaborative mechanisms from software architecture, application mode, and data exchange protocol. These mechanisms have been integrated into a groupware solution, which was validated by a planning team in a truly geographically dispersed condition. Analysis of the validation results revealed that the proposed solution is feasible for real-time collaborative 4D planning to gain a robust construction plan through collaborative teamwork. The realization of this solution triggers further considerations about its enhancement for wider groupware applications

    D.2.1.2 First integrated Grid infrastructure

    No full text

    Design Fiction Diegetic Prototyping: A Research Framework for Visualizing Service Innovations

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Purpose: This paper presents a design fiction diegetic prototyping methodology and research framework for investigating service innovations that reflect future uses of new and emerging technologies. Design/methodology/approach: Drawing on speculative fiction, we propose a methodology that positions service innovations within a six-stage research development framework. We begin by reviewing and critiquing designerly approaches that have traditionally been associated with service innovations and futures literature. In presenting our framework, we provide an example of its application to the Internet of Things (IoT), illustrating the central tenets proposed and key issues identified. Findings: The research framework advances a methodology for visualizing future experiential service innovations, considering how realism may be integrated into a designerly approach. Research limitations/implications: Design fiction diegetic prototyping enables researchers to express a range of ‘what if’ or ‘what can it be’ research questions within service innovation contexts. However, the process encompasses degrees of subjectivity and relies on knowledge, judgment and projection. Practical implications: The paper presents an approach to devising future service scenarios incorporating new and emergent technologies in service contexts. The proposed framework may be used as part of a range of research designs, including qualitative, quantitative and mixed method investigations. Originality: Operationalizing an approach that generates and visualizes service futures from an experiential perspective contributes to the advancement of techniques that enables the exploration of new possibilities for service innovation research

    OGC SWE-based Data Acquisition System Development for EGIM on EMSODEV EU Project

    Get PDF
    The EMSODEV[1] (European Multidisciplinary Seafloor and water column Observatory DEVelopment) is an EU project whose general objective is to set up the full implementation and operation of the EMSO distributed Research Infrastructure (RI), through the development, testing and deployment of an EMSO Generic Instrument Module (EGIM). This research infrastructure will provide accurate records on marine environmental changes from distributed local nodes around Europe. These observations are critical to respond accurately to the social and scientific challenges such as climate change, changes in marine ecosystems, and marine hazards. In this paper we present the design and development of the EGIM data acquisition system. EGIM is able to operate on any EMSO node, mooring line, sea bed station, cabled or non-cabled and surface buoy. In fact a central function of EGIM within the EMSO infrastructure is to have a number of ocean locations where the same set of core variables are measured homogeneously: using the same hardware, same sensor references, same qualification methods, same calibration methods, same data format and access, and same maintenance procedures.Peer ReviewedPostprint (published version

    SIMDAT

    No full text

    Designing a novel virtual collaborative environment to support collaboration in design review meetings

    Get PDF
    Project review meetings are part of the project management process and are organised to assess progress and resolve any design conflicts to avoid delays in construction. One of the key challenges during a project review meeting is to bring the stakeholders together and use this time effectively to address design issues as quickly as possible. At present, current technology solutions based on BIM or CAD are information-centric and do not allow project teams to collectively explore the design from a range of perspectives and brainstorm ideas when design conflicts are encountered. This paper presents a system architecture that can be used to support multi-functional team collaboration more effectively during such design review meetings. The proposed architecture illustrates how information-centric BIM or CAD systems can be made human- and team-centric to enhance team communication and problem solving. An implementation of the proposed system architecture has been tested for its utility, likability and usefulness during design review meetings. The evaluation results suggest that the collaboration platform has the potential to enhance collaboration among multi-functional teams

    Collaborative e-science architecture for Reaction Kinetics research community

    Get PDF
    This paper presents a novel collaborative e-science architecture (CeSA) to address two challenging issues in e-science that arise from the management of heterogeneous distributed environments: (i) how to provide individual scientists an integrated environment to collaborate with each other in distributed, loosely coupled research communities where each member might be using a disparate range of tools; and (ii) how to provide easy access to a range of computationally intensive resources from a desktop. The Reaction Kinetics research community was used to capture the requirements and in the evaluation of the proposed architecture. The result demonstrated the feasibility of the approach and the potential benefits of the CeSA
    • 

    corecore