51 research outputs found

    Tactile sensing chips with POSFET array and integrated interface electronics

    Get PDF
    This work presents the advanced version of novel POSFET (Piezoelectric Oxide Semiconductor Field Effect Transistor) devices based tactile sensing chip. The new version of the tactile sensing chip presented here comprises of a 4 x 4 array of POSFET touch sensing devices and integrated interface electronics (i.e. multiplexers, high compliance current sinks and voltage output buffers). The chip also includes four temperature diodes for the measurement of contact temperature. Various components on the chip have been characterized systematically and the overall operation of the tactile sensing system has been evaluated. With new design the POSFET devices have improved performance (i.e. linear response in the dynamic contact forces range of 0.01–3N and sensitivity (without amplification) of 102.4 mV/N), which is more than twice the performance of their previous implementations. The integrated interface electronics result in reduced interconnections which otherwise would be needed to connect the POSFET array with off-chip interface electronic circuitry. This research paves the way for CMOS (Complementary Metal Oxide Semiconductor) implementation of full on-chip tactile sensing systems based on POSFETs

    Device modelling for bendable piezoelectric FET-based touch sensing system

    Get PDF
    Flexible electronics is rapidly evolving towards devices and circuits to enable numerous new applications. The high-performance, in terms of response speed, uniformity and reliability, remains a sticking point. The potential solutions for high-performance related challenges bring us back to the timetested silicon based electronics. However, the changes in the response of silicon based devices due to bending related stresses is a concern, especially because there are no suitable models to predict this behavior. This also makes the circuit design a difficult task. This paper reports advances in this direction, through our research on bendable Piezoelectric Oxide Semiconductor Field Effect Transistor (POSFET) based touch sensors. The analytical model of POSFET, complimented with Verilog-A model, is presented to describe the device behavior under normal force in planar and stressed conditions. Further, dynamic readout circuit compensation of POSFET devices have been analyzed and compared with similar arrangement to reduce the piezoresistive effect under tensile and compressive stresses. This approach introduces a first step towards the systematic modeling of stress induced changes in device response. This systematic study will help realize high-performance bendable microsystems with integrated sensors and readout circuitry on ultra-thin chips (UTCs) needed in various applications, in particular, the electronic skin (e-skin)

    Device Modelling of Silicon Based High-Performance Flexible Electronics

    Get PDF
    The area of flexible electronics is rapidly expanding and evolving. With applications requiring high speed and performance, ultra-thin silicon-based electronics has shown its prominence. However, the change in device response upon bending is a major concern. In absence of suitable analytical and design tool friendly model, the behavior under bent condition is hard to predict. This poses challenges to circuit designer working in the bendable electronics field, in laying out a design that can give a precise response in a stressed condition. This paper presents advances in this direction and investigates the effect of compressive and tensile stress on the performance of NMOS and PMOS transistor and a touch sensor comprising a transistor and piezoelectric capacitor

    Biomimetic tactile sensing

    Get PDF

    Event Driven Tactile Sensors for Artificial Devices

    Get PDF
    Present-day robots are, to some extent, able to deal with high complexity and variability of the real-world environment. Their cognitive capabilities can be further enhanced, if they physically interact and explore the real-world objects. For this, the need for efficient tactile sensors is growing day after day in such a way are becoming more and more part of daily life devices especially in robotic applications for manipulation and safe interaction with the environment. In this thesis, we highlight the importance of touch sensing in humans and robots. Inspired by the biological systems, in the the first part, we merge between neuromorphic engineering and CMOS technology where the former is a eld of science that replicates what is biologically (neurons of the nervous system) inside humans into the circuit level. We explain the operation and then characterize different sensor circuits through simulation and experiment to propose finally new prototypes based on the achieved results. In the second part, we present a machine learning technique for detecting the direction and orientation of a sliding tip over a complete skin patch of the iCub robot. Through learning and online testing, the algorithm classies different trajectories across the skin patch. Through this part, we show the results of the considered algorithm with a future perspective to extend the work

    Temperature compensated tactile sensing using MOSFET with P(VDF-TrFE)/BaTiO3 capacitor as extended gate

    Get PDF
    This work presents Poly(vinylidene fluoride – trifluoroethylene))/Barium Titanate (P(VDF-TrFE)-BT) nanocomposite based touch sensors tightly coupled with MOSFET devices in extended gate configuration. The P(VDF-TrFE)-BT nanocomposite exploits the distinct piezo and pyroelectric properties of P(VDF-TrFE) polymer matrix and BT fillers to suppress the temperature response when force and temperature are varied simultaneously. The reasons for this unique feature have been established through structural and electrical characterization of nanocomposite. The proposed touch sensor was tested over a wide range of force/pressure (0-4N)/(0-364 Pa) and temperature (26-70°C) with almost linear response. The sensitivity towards force/pressure and temperature sensor are 670 mV/N/7.36 mV/Pa and 15.34 mV/°C respectively. With this modified touch sensing capability, the proposed sensors will open new direction for tactile sensing in robotic applications

    Towards Graphene Based Flexible Force Sensor

    Get PDF
    Monolayer graphene transferred over flexible polyvinyl chloride (PVC) substrate combined with closely packed layer of nano-spheres (NSs) is fabricated for force sensing application. The force was applied from vertical direction through NSs which acts as lateral strain enhancers. The stack persuades lateral in-plane strain in the monolayer graphene for the applied vertical pressure through NSs. The electrical measurements demonstrate that the graphene layer is able to respond for soft touch range commonly perceived by human beings. The sensing stack was fabricated using simple approaches such as hot lamination graphene transfer process and drop casting of NSs. The device structure is flexible to conformably cover the nonplanar surface for applications such as large area pressure sensing and robotic e-skin

    A spiking and adapting tactile sensor for neuromorphic applications

    Get PDF
    The ongoing research on and development of increasingly intelligent artificial systems propels the need for bio inspired pressure sensitive spiking circuits. Here we present an adapting and spiking tactile sensor, based on a neuronal model and a piezoelectric field-effect transistor (PiezoFET). The piezoelectric sensor device consists of a metal-oxide semiconductor field-effect transistor comprising a piezoelectric aluminium-scandium-nitride (AlxSc1-xN) layer inside of the gate stack. The so augmented device is sensitive to mechanical stress. In combination with an analogue circuit, this sensor unit is capable of encoding the mechanical quantity into a series of spikes with an ongoing adaptation of the output frequency. This allows for a broad application in the context of robotic and neuromorphic systems, since it enables said systems to receive information from the surrounding environment and provide encoded spike trains for neuromorphic hardware. We present numerical and experimental results on this spiking and adapting tactile sensor

    Multifunctional Flexible PVDF-TrFE/BaTiO3 Based Tactile Sensor for Touch and Temperature Monitoring

    Get PDF
    This paper presents an enhanced piezoelectricity based sensor for touch and temperature sensing. The sensor is realized over flexible polyimide film, making it suitable for application like e-skin. The sensing material is composed of Polyvinylidene Fluoride-Trifluoroethylene (PVDF-TrFE) and Barium Titanate (BaTiO3) nanoparticles. While, the piezoelectric polymer PVDF-TrFE ensures the flexibility of sensor, BaTiO3 imparts high sensitivity to touch and temperature. The sensor is tested over temperature range which is common in daily life and the sensitivity to touch is characterized by tapping mode using fixed load. The results confirms the advantage of using poly-ceramic composite over piezoelectric polymer
    • …
    corecore