33,832 research outputs found

    Interface compensation for more accurate power transfer and signal synchronization within power hardware-in-the-loop simulation

    Get PDF
    Power hardware-in-the-loop (PHIL) simulation leverages the real-time emulation of a large-scale complex power system, while also enabling the in-depth investigation of novel actual power components and their interactions with the emulated power grid. The dynamics and non-ideal characteristics (e.g., time delay, non-unity gain, and limited bandwidth) of the power interface result in stability and accuracy issues within the PHIL closed-loop simulations. In this paper, a compensation method is proposed to compensate for the non-ideal power interface by maximizing its bandwidth, maintaining its unity-gain characteristic, and compensating for its phase-shift over the frequencies of interest. The accuracy of power signals synchronization and the transparency of power transfer within the PHIL configuration are assessed by employing the error metrics. In conjunction with the frequency-domain stability analysis and the time-domain simulations, a case study is made to validate the proposed compensation method

    Modeling and Analysis of Active Front-End Induction Motor Drive for Reactive Power Compensation

    Get PDF
    In this thesis, an active front end induction motor drive for reactive power compensation is analyzed. The classical vector control approach for high performance control of an induction motor drive is a well established industry standard today. The same idea of decoupled control is extended to the line-side PWM converter for achieving better dynamic performance. The system model is obtained using d-q rotating frame theory. The iqe component of line currents is used to control the reactive power. The idecomponent is used to control the dc-link voltage and also to supply active power required by the motor. A high gain feedback controller with input-output linearization is presented to remove coupling between iqe and ide currents. A load power feed-forward loop is added to the dc-link voltage controller for fast dynamic response. The drive performance is analyzed to define system specifications. The motor acceleration, deceleration, and variable power factor operation (reactive power compensation) of the active drive system are demonstrated. The motor load is varied from no load to full load in steps of 10% each. For each step the device currents, switching power loss, line harmonics, and dc-link ripples are plotted. This data is used to derive conclusions that define system specifications and also state operating limits. The control of the drive system is implemented in MATLAB-SIMULINK. The complete system hardware is implemented in commercially available simulation tool, PSIM. The two software packages are interlinked using an interface module

    Architecture of a network-in-the-Loop environment for characterizing AC power system behavior

    Get PDF
    This paper describes the method by which a large hardware-in-the-loop environment has been realized for three-phase ac power systems. The environment allows an entire laboratory power-network topology (generators, loads, controls, protection devices, and switches) to be placed in the loop of a large power-network simulation. The system is realized by using a realtime power-network simulator, which interacts with the hardware via the indirect control of a large synchronous generator and by measuring currents flowing from its terminals. These measured currents are injected into the simulation via current sources to close the loop. This paper describes the system architecture and, most importantly, the calibration methodologies which have been developed to overcome measurement and loop latencies. In particular, a new "phase advance" calibration removes the requirement to add unwanted components into the simulated network to compensate for loop delay. The results of early commissioning experiments are demonstrated. The present system performance limits under transient conditions (approximately 0.25 Hz/s and 30 V/s to contain peak phase-and voltage-tracking errors within 5. and 1%) are defined mainly by the controllability of the synchronous generator

    European White Book on Real-Time Power Hardware in the Loop Testing : DERlab Report No. R- 005.0

    Get PDF
    The European White Book on Real-Time-Powerhardware-in-the-Loop testing is intended to serve as a reference document on the future of testing of electrical power equipment, with specifi c focus on the emerging hardware-in-the-loop activities and application thereof within testing facilities and procedures. It will provide an outlook of how this powerful tool can be utilised to support the development, testing and validation of specifi cally DER equipment. It aims to report on international experience gained thus far and provides case studies on developments and specifi c technical issues, such as the hardware/software interface. This white book compliments the already existing series of DERlab European white books, covering topics such as grid-inverters and grid-connected storag

    Exoskeleton master controller with force-reflecting telepresence

    Get PDF
    A thorough understanding of the requirements for successful master-slave robotic systems is becoming increasingly desirable. Such systems can aid in the accomplishment of tasks that are hazardous or inaccessible to humans. Although a history of use has proven master-slave systems to be viable, system requirements and the impact of specifications on the human factors side of system performance are not well known. In support of the next phase of teleoperation research being conducted at the Armstrong Research Laboratory, a force-reflecting, seven degree of freedom exoskeleton for master-slave teleoperation has been concepted, and is presently being developed. The exoskeleton has a unique kinematic structure that complements the structure of the human arm. It provides a natural means for teleoperating a dexterous, possibly redundant manipulator. It allows ease of use without operator fatigue and faithfully follows human arm and wrist motions. Reflected forces and moments are remotely transmitted to the operator hand grip using a cable transmission scheme. This paper presents the exoskeleton concept and development results to date. Conceptual design, hardware, algorithms, computer architecture, and software are covered

    Five-Axis Machine Tool Condition Monitoring Using dSPACE Real-Time System

    Get PDF
    This paper presents the design, development and SIMULINK implementation of the lumped parameter model of C-axis drive from GEISS five-axis CNC machine tool. The simulated results compare well with the experimental data measured from the actual machine. Also the paper describes the steps for data acquisition using ControlDesk and hardware-in-the-loop implementation of the drive models in dSPACE real-time system. The main components of the HIL system are: the drive model simulation and input – output (I/O) modules for receiving the real controller outputs. The paper explains how the experimental data obtained from the data acquisition process using dSPACE real-time system can be used for the development of machine tool diagnosis and prognosis systems that facilitate the improvement of maintenance activities

    SIRU development. Volume 1: System development

    Get PDF
    A complete description of the development and initial evaluation of the Strapdown Inertial Reference Unit (SIRU) system is reported. System development documents the system mechanization with the analytic formulation for fault detection and isolation processing structure; the hardware redundancy design and the individual modularity features; the computational structure and facilities; and the initial subsystem evaluation results

    A study of digital gyro compensation loops

    Get PDF
    The feasibility is discussed of replacing existing state-of-the-art analog gyro compensation loops with digital computations. This was accomplished by designing appropriate compensation loops for the dry turned TDF gyro, selecting appropriate data conversion and processing techniques and algorithms, and breadboarding the design for laboratory evaluation. A breadboard design was established in which one axis of a Teledyne turned-gimbal TDF gyro was caged digitally while the other was caged using conventional analog electronics. The digital loop was designed analytically to closely resemble the analog loop in performance. The breadboard was subjected to various static and dynamic tests in order to establish the relative stability characteristics and frequency responses of the digital and analog loops. Several variations of the digital loop configuration were evaluated. The results were favorable

    Steering control for haptic feedback and active safety functions

    Get PDF
    Steering feedback is an important element that defines driver–vehicle interaction. It strongly affects driving performance and is primarily dependent on the steering actuator\u27s control strategy. Typically, the control method is open loop, that is without any reference tracking; and its drawbacks are hardware dependent steering feedback response and attenuated driver–environment transparency. This thesis investigates a closed-loop control method for electric power assisted steering and steer-by-wire systems. The advantages of this method, compared to open loop, are better hardware impedance compensation, system independent response, explicit transparency control and direct interface to active safety functions.The closed-loop architecture, outlined in this thesis, includes a reference model, a feedback controller and a disturbance observer. The feedback controller forms the inner loop and it ensures: reference tracking, hardware impedance compensation and robustness against the coupling uncertainties. Two different causalities are studied: torque and position control. The two are objectively compared from the perspective of (uncoupled and coupled) stability, tracking performance, robustness, and transparency.The reference model forms the outer loop and defines a torque or position reference variable, depending on the causality. Different haptic feedback functions are implemented to control the following parameters: inertia, damping, Coulomb friction and transparency. Transparency control in this application is particularly novel, which is sequentially achieved. For non-transparent steering feedback, an environment model is developed such that the reference variable is a function of virtual dynamics. Consequently, the driver–steering interaction is independent from the actual environment. Whereas, for the driver–environment transparency, the environment interaction is estimated using an observer; and then the estimated signal is fed back to the reference model. Furthermore, an optimization-based transparency algorithm is proposed. This renders the closed-loop system transparent in case of environmental uncertainty, even if the initial condition is non-transparent.The steering related active safety functions can be directly realized using the closed-loop steering feedback controller. This implies, but is not limited to, an angle overlay from the vehicle motion control functions and a torque overlay from the haptic support functions.Throughout the thesis, both experimental and the theoretical findings are corroborated. This includes a real-time implementation of the torque and position control strategies. In general, it can be concluded that position control lacks performance and robustness due to high and/or varying system inertia. Though the problem is somewhat mitigated by a robust H-infinity controller, the high frequency haptic performance remains compromised. Whereas, the required objectives are simultaneously achieved using a torque controller
    corecore