224,318 research outputs found

    Constraint-based sequence mining using constraint programming

    Full text link
    The goal of constraint-based sequence mining is to find sequences of symbols that are included in a large number of input sequences and that satisfy some constraints specified by the user. Many constraints have been proposed in the literature, but a general framework is still missing. We investigate the use of constraint programming as general framework for this task. We first identify four categories of constraints that are applicable to sequence mining. We then propose two constraint programming formulations. The first formulation introduces a new global constraint called exists-embedding. This formulation is the most efficient but does not support one type of constraint. To support such constraints, we develop a second formulation that is more general but incurs more overhead. Both formulations can use the projected database technique used in specialised algorithms. Experiments demonstrate the flexibility towards constraint-based settings and compare the approach to existing methods.Comment: In Integration of AI and OR Techniques in Constraint Programming (CPAIOR), 201

    Puzzle games: a metaphor for computational thinking

    Get PDF

    Addictive links: The motivational value of adaptive link annotation

    Get PDF
    Adaptive link annotation is a popular adaptive navigation support technology. Empirical studies of adaptive annotation in the educational context have demonstrated that it can help students to acquire knowledge faster, improve learning outcomes, reduce navigational overhead, and encourage non-sequential navigation. In this paper, we present our exploration of a lesser known effect of adaptive annotation, its ability to significantly increase students' motivation to work with non-mandatory educational content. We explored this effect and confirmed its significance in the context of two different adaptive hypermedia systems. The paper presents and discusses the results of our work

    Analysing the behaviour of robot teams through relational sequential pattern mining

    Full text link
    This report outlines the use of a relational representation in a Multi-Agent domain to model the behaviour of the whole system. A desired property in this systems is the ability of the team members to work together to achieve a common goal in a cooperative manner. The aim is to define a systematic method to verify the effective collaboration among the members of a team and comparing the different multi-agent behaviours. Using external observations of a Multi-Agent System to analyse, model, recognize agent behaviour could be very useful to direct team actions. In particular, this report focuses on the challenge of autonomous unsupervised sequential learning of the team's behaviour from observations. Our approach allows to learn a symbolic sequence (a relational representation) to translate raw multi-agent, multi-variate observations of a dynamic, complex environment, into a set of sequential behaviours that are characteristic of the team in question, represented by a set of sequences expressed in first-order logic atoms. We propose to use a relational learning algorithm to mine meaningful frequent patterns among the relational sequences to characterise team behaviours. We compared the performance of two teams in the RoboCup four-legged league environment, that have a very different approach to the game. One uses a Case Based Reasoning approach, the other uses a pure reactive behaviour.Comment: 25 page

    Reusable Knowledge-based Components for Building Software Applications: A Knowledge Modelling Approach

    Get PDF
    In computer science, different types of reusable components for building software applications were proposed as a direct consequence of the emergence of new software programming paradigms. The success of these components for building applications depends on factors such as the flexibility in their combination or the facility for their selection in centralised or distributed environments such as internet. In this article, we propose a general type of reusable component, called primitive of representation, inspired by a knowledge-based approach that can promote reusability. The proposal can be understood as a generalisation of existing partial solutions that is applicable to both software and knowledge engineering for the development of hybrid applications that integrate conventional and knowledge based techniques. The article presents the structure and use of the component and describes our recent experience in the development of real-world applications based on this approach

    The Immune System: the ultimate fractionated cyber-physical system

    Full text link
    In this little vision paper we analyze the human immune system from a computer science point of view with the aim of understanding the architecture and features that allow robust, effective behavior to emerge from local sensing and actions. We then recall the notion of fractionated cyber-physical systems, and compare and contrast this to the immune system. We conclude with some challenges.Comment: In Proceedings Festschrift for Dave Schmidt, arXiv:1309.455

    A review of Australasian investigations into problem solving and the novice programmer

    Get PDF
    This Australasian focused review compares a number of recent studies that have identified difficulties encountered by novices while learning programming and problem solving. These studies have shown that novices are not performing at expected levels and many novices have only a fragile knowledge of programming, which may prevent them from learning and applying problem solving strategies. The review goes on to explore proposals for explicitly incorporating problem solving strategy instruction into introductory programming curricula and assessment, in an attempt to produce improved learning outcomes for novices. Finally, directions suggested by the reviewed studies are gathered and some unanswered questions are raised
    • …
    corecore