2,655 research outputs found

    Marco de trabajo de integración y flujo de trabajo para la visualización virtual del patrimonio cultural. Revisita del montículo Çukuriçi Höyük, Turquía

    Full text link
    [EN] This article sets a framework for computer-based visualisations of cultural heritage sites. The project focuses on a workflow for a visualisation illustrated on a specific solution for the site of Çukuriçi Höyük, a tell settlement in Turkey. With the virtual presentation, an interdisciplinary research group tries to offer complex scientific results to the general public as well as to experts. The team utilised data acquisition and communication techniques, interpretative approaches, and dissemination methods. The three-dimensional (3D) outcome is based on a large amount of scientific data, usually available only via analogue or digital publications for a specialised audience. The work focused on constructed and personal authenticity to reach the viewer’s feelings. As an interpretative narrative, the daily lives of the inhabitants were selected. A communication plan was constructed, and a video animation with narration and a musical background was selected as the most appropriate communication tool. The movie was divided into four chapters (Introduction, Neolithic Period, Chalcolithic Period and Early Bronze Age Period). A separate webpage was designed to provide additional information when the video is viewed online. The webpage was divided into tabs that describe each chapter and three additional topics (Visualisation Process, Further Reading, and Credits). The video was shared in different settings, e.g. at public talks and on social media. The process resulted in a complex workflow that consists of several stages: data acquisition, first interpretation, 3D model creation, communication plan, second interpretation, 3D model adjustment, and dissemination output. Each stage of the workflow serves as an example to show the types of nodes these parts can include. The result is a flexible framework with predefined process stages, which can be re-used for similar projects.[ES] Este artículo define un marco de trabajo de visualizaciones por ordenador de sitios patrimoniales. El proyecto se centra en un flujo de trabajo ilustrado por una solución específica de visualización del sitio de Çukuriçi Höyük, un asentamiento sobre un montículo en Turquía. Con la presentación virtual, un grupo de investigación interdisciplinar intenta ofrecer resultados científicos complejos al público en general, así como a los expertos. El equipo utilizó captura de datos y técnicas de comunicación, así como enfoques interpretativos y métodos de difusión. El resultado tridimensional (3D) está basado en una gran cantidad de datos científicos, normalmente disponibles sólo a través de publicaciones analógicas o digitales orientadas a una audiencia especializada. El trabajo se centró en la construcción y la autenticidad personal para alcanzar al espectador a nivel emocional. Como narrativa interpretativa, se seleccionaró la vida diaria de los habitantes. Se construyó un plan de comunicación y se eligió una animación de vídeo con narración y musica de fondo como la herramienta de comunicación más apropiada. La película se dividió en cuatro capítulos (Introducción, Período Neolítico, Período Calcolítico y Período de la Edad de Bronce Temprano). Se diseñó una página web separada para proporcionar información adicional cuando el video se muestra en línea. La página web se dividió en pestañas que describen cada capítulo y tres temas adicionales (Proceso de visualización, Lectura adicional y Créditos). El vídeo se compartió en diferentes entornos, tales como charlas públicas y en redes sociales. El proceso produjo un complejo flujo de trabajo que consta de varias etapas: captura de datos, primera interpretación, creación del modelo 3D, plan de comunicación, segunda interpretación, ajuste del modelo 3D y difusión. Cada etapa del flujo de trabajo sirve de ejemplo para mostrar los tipos de nodos que estas partes pueden incluir. El resultado es un marco de trabajo flexible con etapas de proceso predefinidas, que pueden reutilizarse en proyectos similares.Lužnik-Jancsary, N.; Horejs, B.; Klein, M.; Schwall, C. (2020). Integration and workflow framework for virtual visualisation of cultural heritage. Revisiting the tell of Çukuriçi Höyük, Turkey. Virtual Archaeology Review. 11(23):63-74. https://doi.org/10.4995/var.2020.13086OJS6374112316th General Assembly of ICOMOS. (2008). ICOMOS Charter for the Interpretation and Presentation of Cultural Heritage Sites. International Journal of Cultural Property, 15(4), 377-383. https://doi.org/10.1017/S0940739108080417Andrade, J. G., & Dias, P. (2020). A phygital approach to cultural heritage: augmented reality at Regaleira. Virtual Archaeology Review, 11(22), 15. https://doi.org/10.4995/var.2020.11663Batarda Fernandes, A. (2018). "But will there be visitors?" Public outreach efforts using social media and online presence at the Côa Valley Museum and Archaeological Park (Portugal). Internet Archaeology, 47. https://doi.org/10.11141/ia.47.5Bergner, M., Horejs, B., & Pernicka, E. (2009). Zur Herkunft der Obsidianartefakte vom Çukuriçi Höyük. Studia Troica 18, 249-271. https://doi.org/10.15496/publikation-27955Britsch, C., & Horejs, B. (2014). The role of textile production and fishing in the EBA metallurgical centre of Çukuriçi Höyük (Turkey). In Egypt and the Levant (Vol. 24, pp. 227-240). https://doi.org/10.1553/s227Copeland, T. (2004). Presenting archaeology to the public: constructing insights on-site. In N. Merriman (Ed.), Public Archaeology (pp. 132-144). Routledge. https://doi.org/10.4324/9780203646052Cots, I., Vilà, J., Diloli, J., Ferré, R., & Bricio, L. (2018). Virtual archaeology: From archaeological excavation to the management and diffusion of heritage. Les cases de la catedral (Tortosa) and the protohistorical settlement of la Cella (Salou), Tarragona. Virtual Archaeology Review, 9(19), 102-113. https://doi.org/10.4995/VAR.2018.9754Davis, E. T., Scott, K., Pair, J., Hodges, L. F., & Oliverio, J. (1999). Can Audio Enhance Visual Perception and Performance in a Virtual Environment? Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 43(22), 1197-1201. https://doi.org/10.1177/154193129904302206Denard, H. (Ed.). (2009). The London Charter for the computer-based visualisation of cultural heritage. http://www.londoncharter.org/fileadmin/templates/main/docs/london_charter_2_1_en.pdfDerde, W., & Ludwig, T. (2016). Heritage Interpretation. In G. Tilkin (Ed.), Professional Development in Heritage Interpretation - Manual (pp. 10-20). Landcommanderij Alden Biesen. http://www.interpret-europe.net/fileadmin/Documents/projects/InHerit/Manual-InHerit-EN.pdfFurukawa, Y., Curless, B., Seitz, S. M., & Szeliski, R. (2009). Reconstructing building interiors from images. 2009 IEEE 12th International Conference on Computer Vision, 80-87. https://doi.org/10.1109/ICCV.2009.5459145Furukawa, Y., Curless, B., Seitz, S. M., & Szeliski, R. (2010). Towards Internet-scale Multi-view Stereo. 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1434-1441. https://doi.org/10.1109/CVPR.2010.5539802Galik, A. (2013). Çukuriçi Höyük Zooarchaeology Data. Çukuriçi Höyük Zooarchaeology. https://doi.org/10.6078/M7RF5RZ7Goldstein, A. (1980). Thrills in response to music and other stimuli. Physiological Psychology, 8(1), 126-129. https://doi.org/10.3758/BF03326460Ham, S. H., Carter, J., Beck, L., Cable, T., & Ward, C. (2013). Conversations: Tilden's fifth principle. Journal of Interpretation Research, 18(1), 97-104.Hermon, S. (2008). 3D Modelling and Virtual Reality for the Archaeological Research and Museum Communication of Cultural Heritage. In I. Oberländer-Târnoveanu (Ed.), Museum and the Internet. Presenting Cultural Heritage Resources On-line. Selected Papers from the International Summer Course in Buşteni, Romania, 20th - 26th of September, 2004 (pp. 57-72). Arcaeolingua. https://www.academia.edu/285879/3D_Modelling_and_Virtual_Reality_for_the_Archaeological_Research_and_Museum_Communication_of_Cultural_HeritageHermon, S., & Niccoluci, F. (2018). Digital Authenticity and the London Charter principles. In Authenticity and cultural heritage in the age of 3D digital reproductions. (pp. 37-47). https://doi.org/https://doi.org/10.17863/CAM.27029Hill, S., & Cable, T. T. (2006). The Concept of Authenticity: Implications for Interpretation. Journal of Interpretation Research, 11(1), 55-65.Horejs, B. (2017). Çukuriçi Höyük 1. Anatolia and the Aegean from the 7th to the 3rd Millennium BC. In OREA 5. Austrian Academy of Sciences Press.Horejs, B., Galik, A., Thanheiser, U., & Wiesinger, S. (2011). Aktivitäten und Subsistenz in den Siedlungen des Çukuriçi Höyük. Der Forschungsstand nach den Ausgrabungen 2006-2009. Praehistorische Zeitschrift, 86(1), 31-66. https://doi.org/10.1515/pz.2011.003Howard, P. (2003). Heritage : management, interpretation, identity. Continuum International Publishing.Howland, M. D. (2018). 3D Recording in the Field: Style Without Substance? In Cyber-Archaeology and Grand Narratives (Issue 13, pp. 19-33). Springer International Publishing. https://doi.org/10.1007/978-3-319-65693-9_2Institute for Oriental and European Archaeology (OREA), & 7reasons Medien GmbH. (2016). Çukuriçi Höyük.The World Heritage Site through Time. https://defc.acdh.oeaw.ac.at/cukurici-movie/International Forum of Virtual Archaeology. (2011). Principles of Seville. International Principles of Virtual Archeology (p. 20). http://sevilleprinciples.com/Isenberg, T., Neumann, P., Carpendale, S., Sousa, M. C., & Jorge, J. A. (2006). Non-photorealistic rendering in context. Proceedings of the 3rd International Symposium on Non-Photorealistic Animation and Rendering - NPAR '06, 115-126. https://doi.org/10.1145/1124728.1124747Jones, S., Jeffrey, S., Maxwell, M., Hale, A., & Jones, C. (2018). 3D heritage visualisation and the negotiation of authenticity: the ACCORD project. International Journal of Heritage Studies, 24(4), 333-353. https://doi.org/10.1080/13527258.2017.1378905Kidd, J. (2011). Enacting engagement online: framing social media use for the museum. Information Technology & People, 24(1), 64-77. https://doi.org/10.1108/09593841111109422Knipping, M., Müllenhoff, M., & Brückner, H. (2008). Human induced landscape changes around Bafa Gölü (western Turkey). Vegetation History and Archaeobotany, 17(4), 365-380. https://doi.org/10.1007/s00334-007-0132-8Ludwig, T. (2015). The Interpretive Guide - Sharing Heritage with People (M. H. Glen (Ed.); 2nd ed.). Bildungswerk interpretation. http://www.interpret-europe.net/fileadmin/Documents/projects/HeriQ/the_interpretive_guide_2015_en.pdfLunenburg, F. C. (2010). Communication : The Process, Barriers, And Improving Effectiveness. Schooling, 1(1), 1-11. https://www.mcgill.ca/engage/files/engage/communication_lunenburg_2010.pdfLužnik, N., & Klein, M. (2016). Interdisciplinary workflow for Virtual Archaeology. Digital Heritage International Congress, Digital Heritage 2015, 177-180. https://doi.org/10.1109/DigitalHeritage.2015.7419481Lužnik Jancsary, N., Horejs, B., Ostmann, F., Schwall, C., & Klein, M. (2016). Documentation of the movie 'Çukuriçi Höyük. The World Heritage Site Through Time.' http://defc.digital-humanities.at/movie/Macnamara, J. (2009). The 21st Century Media (R)evolution. In The 21st Century Media (R)evolution (2nd ed.). Peter Lang US. https://doi.org/10.3726/b15339Mayer, R. E., & Anderson, R. B. (1992). The instructive animation: Helping students build connections between words and pictures in multimedia learning. Journal of Educational Psychology, 84(4), 444-452. https://doi.org/10.1037/0022-0663.84.4.444Merriam-Webster.com. (2019a). Reconstructing | Definition of Reconstructing by Merriam-Webster. Merriam Webster. https://www.merriam-webster.com/dictionary/reconstructingMerriam-Webster.com. (2019b). Visualize | Definition of Visualize by Merriam-Webster. Www.Merriam-Webster.Com/Dictionary/Visualize. https://www.merriam-webster.com/dictionary/visualizeMiller, P., & Richards, J. (1995). The good, the bad, and the downright misleading: archaeological adoption of computer visualization. In J. Huggett & N. Ryan (Eds.), CAA94. Computer Applications and Quantitative Methods in Archaeology 1994 (BAR International Series 600) (pp. 19-22). Tempus Reparatum.Mori, K., & Iwanaga, M. (2017). Two types of peak emotional responses to music: The psychophysiology of chills and tears. Scientific Reports, 7(46063), 1-13. https://doi.org/10.1038/srep46063Morris, J., & Boone, M. A. (1998). The Effects of Music on Emotional Response, Brand Attitude, and Purchase Intent in an Emotional Advertising Condition. In J. W. Alba & J. W. Hutchinson (Eds.), NA - Advances in Consumer Research (Vol. 25, Issue 1, pp. 518-526).Quiring, O. (2016). Interactivity. In P. Rössler, C. A. Hoffner, & L. Zoonen (Eds.), The International Encyclopedia of Media Effects (pp. 1-13). John Wiley & Sons, Inc. https://doi.org/10.1002/9781118783764.wbieme0191Reilly, P. (1991). Towards a Virtual Archaeology. In S. Rahtz & K. Lockyear (Eds.), CAA90. Computer Applications and Quantitative Methods in Archaeology 1990 (BAR International Series 565) (pp. 133-139). Tempus Reparatum. http://caaconference.org/proceedings/paper/21_reilly_caa_1990/Roussou, M. (2002). Virtual Heritage: from the research lab to the broad public. In F. Niccolucci (Ed.), Virtual archaeology : proceedings of the VAST Euroconference, Arezzo 24-25 November 2000 (pp. 93-100). Archeopress.Russo, A., Watkins, J., Kelly, L., & Chan, S. (2008). Participatory Communication with Social Media. Curator: The Museum Journal, 51(1), 21-31. https://doi.org/10.1111/j.2151-6952.2008.tb00292.xSalselas, I., & Penha, R. (2019). The role of sound in inducing storytelling in immersive environments. Proceedings of the 14th International Audio Mostly Conference: A Journey in Sound on ZZZ - AM'19, 191-198. https://doi.org/10.1145/3356590.3356619Schwall, C. (2018). Çukuriçi Höyük 2. Das 5. und 4. Jahrtausend v. Chr. in Westanatolien und der Ostägäis. OREA 7. Vienna: Austrian Academy of Sciences Press.Sloboda, J. A. (1991). Music Structure and Emotional Response: Some Empirical Findings. Psychology of Music, 19(2), 110-120. https://doi.org/10.1177/0305735691192002Statham, N. (2019). Scientific rigour of online platforms for 3D visualization of heritage. Virtual Archaeology Review, 10(20), 1. https://doi.org/10.4995/var.2019.9715Stock, F., Ehlers, L., Horejs, B., Knipping, M., Ladstätter, S., Seren, S., & Brückner, H. (2015). Neolithic settlement sites in Western Turkey - palaeogeographic studies at Çukuriçi Höyük and Arvalya Höyük. Journal of Archaeological Science: Reports, 4, 565-577. https://doi.org/10.1016/j.jasrep.2015.10.009Tachikawa, T., Kaku, M., Iwasaki, A., Gesch, D., Oimoen, M., Zhang, Z., Danielson, J., Krieger, T., Curtis, B., Haase, J., Abrams, M., Crippen, R., Carabajal, C., & Meyer, D. (2011). ASTER Global Digital Elevation Model Version 2 - Summary of Validation Results. http://www.jspacesystems.or.jp/ersdac/GDEM/ver2Validation/Summary_GDEM2_validation_report_final.pdfTilden, F. (2009). Interpreting our heritage (4th ed.). The University of North Carolina Press. https://doi.org/973.07 TILWarner, J. L. (1994). Elmalı-Karataş 2: The Early Bronze Age Village of Karataş. In Archaeological monographs. Bryn Mawr College.Weinreich, H., Obendorf, H., Herder, E., & Mayer, M. (2008). Not quite the average: An empirical study of Web use. ACM Transactions on the Web, 2(1), 31. https://doi.org/10.1145/1326561.132656

    The role, opportunities and challenges of 3D and geo-ICT in archaeology

    Get PDF
    Archaeology joins in the trend of three-dimensional (3D) data and geospatial information technology (geo-ICT). Currently, the spatial archaeological data acquired is 3D and mostly used to create realistic visualizations. Geographical information systems (GIS) are used for decades in archaeology. However, the integration of geo-ICT with 3D data still poses some problems. Therefore, this paper clarifies the current role of 3D, and the opportunities and challenges for 3D and geo-ICT in the domain of archaeology. The paper is concluded with a proposal to integrate both trends and tackle the outlined challenges. To provide a clear illustration of the current practices and the advantages and difficulties of 3D and geo-ICT in the specific case of archaeology, a limited case study is presented of two structures in the Altay Mountains

    Development of a platform recommending 3D and spectral digitisation strategies

    Full text link
    [EN] Spatial and spectral recording of cultural heritage objects is a complex task including data acquisition, processing and analysis involving different technical disciplines. Additionally, the development of a suitable digitisation strategy satisfying the expectations of the humanities experts needs an interdisciplinary dialogue often suffering from misunderstanding and knowledge gaps on both the technical and humanities sides.Through a concerted discussion experts from the cultural heritage and technical domains currently develop a so-called COSCHKR platform (Colour and Space in Cultural Heritage Knowledge Representation) which will give recommendations for spatial and spectral recording strategies adapted to the needs of the cultural heritage application. The platform will make use of an ontology through which the relevant parameters of the different domains involved in the recording, processing, analysis and dissemination of cultural heritage objects are hierarchically structured and are related through rule-based dependencies. Background and basis for this ontology is the fact that a deterministic relation exists between (1) the requirements of a cultural heritage application on spatial, spectral, as well as visual digital information of a cultural heritage object which itself has concrete physical characteristics and (2) the technical possibilities of the spectral and spatial recording devices. Through a case study which deals with the deformation analysis of wooden samples of cultural heritage artefacts this deterministic relationship is illustrated explaining the overall structure and development of the ontology.The aim of the COSCHKR platform is to support cultural heritage experts finding the best suitable recording strategy for their often unique physical cultural heritage object and research question. The platform will support them and will make them aware of the relevant parameters and limitations of the recording strategy with respect to the characteristics of the cultural heritage object, external influences, application, recording devices, and data.This work was partly supported by COST under Action TD1201: Colour and Space in Cultural Heritage (COSCH).Wefers, S.; Karmacharya, A.; Boochs, F. (2016). Development of a platform recommending 3D and spectral digitisation strategies. Virtual Archaeology Review. 7(15):18-27. doi:10.4995/var.2016.5861.SWORD182771

    Reconstrucción digital de estructuras de tejados históricos: desarrollo de un flujo de trabajo de análisis altamente automatizado

    Get PDF
    [EN] Planning on adaptive reuse, maintenance and restoration of historic timber structuresrequiresextensive architectural and structural analysis of the actual condition. Current methods for a modellingof roof constructions consist of several manual steps including the time-consuming dimensional modelling. The continuous development of terrestrial laser scanners increases the accuracy, comfort and speed of the surveying work inroof constructions. Resultingpoint clouds enabledetailed visualisation of theconstructionsrepresented by single points or polygonal meshes, but in fact donot containinformation about the structural system and the beam elements. The developed workflow containsseveral processing steps on the point cloud dataset. The most important among them arethenormal vector computation, the segmentation of points to extract planarfaces, a classification of planarsegmentsto detect the beam side facesand finally theparametric modelling of the beams on the basis of classified segments. Thisenablesa highly automated transitionfrom raw point cloud data to a geometric model containing beams of the structural system. The geometric model,as well as additional information about the structural properties of involved wooden beams and their joints,is necessaryinput for a furtherstructural modellingof timber constructions. The results of the workflow confirm that the proposed methods work well for beams with a rectangularcross-section and minor deformations. Scan shadows and occlusionof beamsby additional installationsor interlockingbeamsdecreases the modelling performance, but in generala high level ofaccuracy and completeness isachieved ata high degree of automation.[ES] Las estructuras históricas de madera requieren un análisis arquitectónico y estructural exhaustivo de su condición real en aras de planificar la reutilización flexible, el mantenimiento y la restauración. Los métodos actuales que modelan las construcciones de cubiertas pasan por aplicar varias etapas en modo manual, que incluye el lento modelado dimensional. El desarrollo continuo de escáneres láser terrestres aumenta la exactitud, la comodidad y la velocidad del trabajo topográfico en construcciones de tejados. Las nubes de puntos resultantes permiten la visualización detallada de las construcciones representadas por puntos o mallas poligonales, pero de hecho no contienen información sobre el sistema estructural y los elementos del travesaño. El flujo de trabajo desarrollado contiene varias etapas de procesamiento en el conjunto de datos de la nube de puntos. Los más importantes son el cálculo del vector normal, la segmentación de puntos que extraen caras planas, la clasificación de segmentos planos que detectan las caras laterales del travesaño y, finalmente, el modelado paramétrico de los travesaños en función de los segmentos clasificados. Esto permite una transición altamente automatizada de los datos de la nube de puntos brutos a un modelo geométrico que contiene los travesaños del sistema estructural. El modelo geométrico, así como la información adicional sobre las propiedades estructurales de las vigas de madera involucradas y de sus juntas, es información necesaria de entrada para el modelado estructural eventual de las construcciones de madera. Los resultados del flujo de trabajo confirman que los métodos propuestos funcionan bien en travesaños que presentan secciones transversales rectangulares y deformaciones menores. Las sombras en los escaneados y las oclusiones de los travesaños a partir de instalaciones adicionales o vigas entrelazados disminuye el rendimiento del modelado, pero en general se logra un nivel de exactitud e integridad elevado con un alto grado de automatización.Pöchtrager, M.; Styhler-Aydın, G.; Döring-Williams, M.; Pfeifer, N. (2018). Digital reconstruction of historic roof structures: developing a workflow for a highly automated analysis. Virtual Archaeology Review. 9(19):21-33. doi:10.4995/var.2018.8855SWORD2133919Attene, M., & Spagnuolo, M. (2000). Automatic surface reconstruction from point sets in space. Computer Graphics Forum, 19(3), 457-465. doi:10.1111/1467-8659.00438Baik, A., Yaagoubi, R., & Boehm, J. (2015). Integration of Jeddah historical BIM and 3D GIS for documentation and restoration of historical monument. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-5/W7, 29-34. doi:10.5194/isprsarchives-XL-5-W7-29-2015Bassier, M., Hadjidemetriou, G., Vergauwen, M., Van Roy, N., & Verstrynge, E. (2016). Implementation of Scan-to-BIM and FEM for the Documentation and Analysis of Heritage Timber Roof Structures. In M. Ioannides, E. Fink, A. Moropoulou, M. Hagedorn-Saupe, A. Fresa, G. Liestøl, . . . P. Grussenmeyer (Ed.), Digital Heritage. Progress in Cultural Heritage: Documentation, Preservation, and Protection. EuroMed 2016 (pp. 79-90). Springer, Cham. doi:10.1007/978-3-319-48496-9_7Besl, P., & McKay, N. (1992). A method for registration of 3D Shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14, 239-254. doi:10.1109/34.121791Chida, A., & Masuda, H. (2016). Reconstruction of polygonal prisms from point-clouds of engineering facilities. Journal of Computational Design and Engineering, 3(4), 322-329. doi:10.1016/j.jcde.2016.05.003Dore, C., & Murphy, M. (2017). Current state of the art historic building information modelling. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W5, 185-192. doi:10.5194/isprsarchives-XLII-2-W5-185-2017Dorninger, P., Nothegger, C., & Rasztovits, S. (2013). Efficient 3-D documentation of Neptune fountain in the park of Schönbrunn palace at millimeter scale. Proceedings XXIV International CIPA Symposium, ISPRS Annals, II, 5/W1, 103-108. doi:10.5194/isprsannals-II-5-W1-103-2013Eßer, G., Styhler-Aydın, G., & Hochreiner, G. (2016a). Construction history and structural assessment of historic roofs - An interdisciplinary approach. In K. Van Balen, & E. Verstrynge (Eds.), Structural analysis of historical constructions. Anamnesis, diagnosis, therapy, controls (pp. 790-795). London, GB.Eßer, G., Styhler-Aydın, G., & Hochreiner, G. (2016b). The historic roof structures of the Vienna Hofburg: An innovative interdisciplinary approach in architectural sciences laying ground for structural modeling. In J. Eberhardsteiner, W. Winter, A. Fadai, & M. Pöll (Eds.), WCTE 2016. World conference on timber engineering (pp. 3039-3047). Wien, Austria.Fischler, M., & Bolles, R. (1981). Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24(6), 381-395. doi:10.1145/358669.358692Glira, P., Pfeifer, N., Briese, C., & Ressl, C. (2015). A Correspondence Framework for ALS Strip Adjustments based on Variants of the ICP Algorithm. Photogrammetrie, Fernerkundung, Geoinformation, 4, 275-289. doi:10.1127/pfg/2015/0270Hochreiner, G., Eßer, G., & Styhler-Aydın, G. (2016). Modern timber engineering methods in the context of historical timber structures. In J. Eberhardsteiner, W. Winter, A. Fadai, & M. Pöll (Eds.), WCTE 2016. World conference on timber engineering (pp. 4830-4838). Wien, Austria.Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., & Stuetzle, W. (1992). Surface reconstruction from unorganized points. SIGGRAPH '92 Proceedings of the 19th annual conference on Computer graphics and interactive techniques. ACM SIGGRAPH Computer Graphics, 26(2), 71-78. doi:10.1145/142920.134011International Organization for Standardization. (2016). Industrial automation systems and integration -- Product data representation and exchange -- Part 21: Implementation methods: Clear text encoding of the exchange Structure. ISO/DIS Standard No. 10303-21. Retrieved from https://www.iso.org/standard/63141.html.Jung, J., Hong, S., Jeong, S., Kim, S., Cho, H., Hong, S., & Heo, J. (2014). Productive modeling for development of asbuilt BIM of existing indoor structures. Automation in Construction, 42, 68-77. doi:10.1016/j.autcon.2014.02.021Kazhdan, M., Bolitho, M., & Hoppe, H. (2006). Poisson surface reconstruction. Symposium on Geometry Processing (pp. 61-70). The Eurographics Association. doi:10.2312/SGP/SGP06/061-070Lee, J., Son, H., Kim, C., & Kim, C. (2013). Skeleton-based 3-D reconstruction of as-built pipelines from laser-scan data. Automation in Reconstruction, 35, 199-207. doi:10.1061/9780784412343.0031Li, W., Goodchild, M., & Church, R. (2013). An efficient measure of compactness for two-dimensional shapes and its application in regionalization problems. International Journal of Geographical Information Science, 1227-1250. doi:10.1080/13658816.2012.752093Nothegger, C., & Dorninger, P. (2009). 3D filtering of high-resolution terrestrial laser scanner point clouds for cultural heritage documentation. Photogrammetrie, Fernerkundung, Geoinformation, 1, 53-63. doi:10.1127/0935-1221/2009/0006Pfeifer, N., & Winterhalder, D. (2004). Modelling of tree cross sections from terrestrial laser scanning data with free-form curves. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 36(8/W2), 76-81.Pfeifer, N., Mandlburger, G., Otepka, J., & Karel, W. (2014). OPALS - A framework for Airborne Laser Scanning data analysis. Computers, Environment and Urban Systems, 45, 125-136. doi:10.1016/j.compenvurbsys.2013.11.002Pöchtrager, M., Styhler-Aydın, G., Döring-Williams, M., & Pfeifer, N. (2017). Automated Reconstruction of Historic Roof Structures from Point Clouds - Development and Examples. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, IV-2-W2, 195-202. doi:10.5194/isprs-annals-IV-2-W2-195-2017Rabbani, T., Dijkman, S., Van den Heuvel, F., & Vosselman, G. (2007). An integrated approach for modelling and global registration of point clouds. ISPRS Journal of Photogrammetry and Remote Sensing, 61(6), 355-370. doi:10.1016/j.isprsjprs.2006.09.006Raumonen, P., Kaasalainen, M., Åkerblom, M., Kaasalainen, S., Kaartinen, H., Vastaranta, M., . . . Lewis, P. (2013). Fast automatic precision tree models from terrestrial laser scanner data. Remote Sensing, 5(2), 491-520. doi:10.3390/rs5020491Stylianidis, E., & Remondino, F. (2016). 3D Recording, Documentation and Management of Cultural Heritage. Caithness, UK: Whittles Publishing.Thies, M., Pfeifer, N., Winterhalder, D., & Gorte, B. (2004). Three-dimensional reconstruction of stems for assessment of taper, sweep and lean based on laser scanning of standing trees. Scandinavian Journal of Forest Research, 19(6), 571-581. doi:10.1080/02827580410019562Thomson, C., & Boehm, J. (2015). Automatic geometry generation from point clouds for BIM. Remote Sensing, 7(9), 11753-11775. doi:10.3390/rs70911753Vosselman, G., & Maas, H.-G. (2010). Airborne and Terrestrial Laser Scanning. Caithness, UK: Whittles Publishing.Wang, D., Hollaus, M., Puttonen, E., & Pfeifer, N. (2016). Automatic and self-adaptive stem reconstruction in landslide-affected forests. Remote Sensing, 8(12), p. 974. doi:10.3390/rs8120974Wang, D., Kankare, V., Puttonen, E., Hollaus, M., & Pfeifer, N. (2016). Reconstructing stem cross section shapes from terrestrial laser scanning. IEEE Geoscience and Remote Sensing Letters, 14(2), 272-276. doi:10.1109/LGRS.2016.2638738Xiong, X., Adan, A., Akinci, B., & Huber, D. (2013). Automatic creation of semantically rich 3D building models from laser scanner data. Automation in Construction, 31, S. 325-337. doi:10.1016/j.autcon.2012.10.006Yang, X., Koehl, M., & Grussenmeyer, P. (2017). Parametric modelling of as-built beam framed structure in BIM environment. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W3, 651-657. doi:10.5194/isprs-archives-XLII-2-W3-651-2017Zhang, R., & Zakhor, A. (2014). Automatic identification of window regions on indoor point clouds using LiDAR and cameras. Applications of Computer Vision (WACV), 2014 IEEE Winter Conference, 107-114. doi:10.1109/WACV.2014.683611

    Virtual Archaeology as an Integrated Preservation Method

    Full text link
    [EN] This paper focuses on virtual archaeology as a scientific activity, that complies with the London Charter, as a sustainable activity, that complies with the UNESCO Charter on the Preservation of Digital Heritage, and as an integration activity to structure and preserve all related information.[ES] Este documento se centra en la arqueología virtual como una actividad científica, que cumple con la Carta de Londres y con la Carta de la UNESCO sobre la preservación del Patrimonio Digital, como una actividad sostenible, y como una actividad de integración para estructurar y preservar toda la información relacionada.Pletinckx, D. (2011). Virtual Archaeology as an Integrated Preservation Method. Virtual Archaeology Review. 2(4):33-37. https://doi.org/10.4995/var.2011.4545OJS333724ARC3D webservice (http://www.ARC3D.be/ )BEACHAM Richard, DENARD Hugh and NICCOLUCCI Francesco (2006), "An Introduction to The London Charter" (http://www.londoncharter.org/introduction.html )EUROPEANA (http://dev.europeana.eu/ )FORTE, Maurizio, ed. (2007), "La Villa di Livia, un percorso di ricerca di archeologia virtuale", l'Erma di Bretschneider, ISBN 8882654613.LONDON CHARTER (http://www.londoncharter.org/ )MESHLAB software (http://meshlab.sourceforge.net/ )NILSSON, David (2007), "The ARC 3D Webservice", EPOCH Knowhow book, available at http://www.her-it-age.net/ , ISBN 978-91-85960-05-7PLETINCKX, Daniel (2008), "An EPOCH Common Infrastructure Tool for Interpretation Management", EPOCH Technical Report, available at http://www.epoch.eu/ in the section Tools.PLETINCKX, Daniel (2007), "Interpretation Management, How to make sustainable visualisations of the past", EPOCH Knowhow book, available at http://www.her-it-age.net/SAVE project (http://www3.iath.virginia.edu/save/ )UNESCO Charter on the Preservation of Digital Heritage, http://unesdoc.unesco.org/images/0013/001331/133171e.pdf , p. 80-83All URLs have been verified on April 15, 2009

    Sound archaeology: terminology, Palaeolithic cave art and the soundscape

    Get PDF
    This article is focused on the ways that terminology describing the study of music and sound within archaeology has changed over time, and how this reflects developing methodologies, exploring the expectations and issues raised by the use of differing kinds of language to define and describe such work. It begins with a discussion of music archaeology, addressing the problems of using the term ‘music’ in an archaeological context. It continues with an examination of archaeoacoustics and acoustics, and an emphasis on sound rather than music. This leads on to a study of sound archaeology and soundscapes, pointing out that it is important to consider the complete acoustic ecology of an archaeological site, in order to identify its affordances, those possibilities offered by invariant acoustic properties. Using a case study from northern Spain, the paper suggests that all of these methodological approaches have merit, and that a project benefits from their integration

    Virtual museum enriched by gis data to share science and culture. Church of saint stephen in Umm ar-Rasas (Jordan)

    Get PDF
    none5noUmm ar-Rasas is a Jordan archaeological site, located 30 km southeast of the city of Madaba, in the northern part of Wadi Mujib. It preserves findings dating back the period from the end of 3rd to the 9th century AD and, since 2004, it belongs to the world heritage list of UNESCO. In 2015 a multidisciplinary work was undertaken over the archaeological site, mainly focusing on the Church of Saint Stephen, with the main purpose of enhancing the knowledge and documenting the conservation state of the polychrome mosaic floor, which covers the entire surface of the hall and presbytery. A huge amount of data has been collected, coming from archaeological and historical investigations, geophysics and geodetic inspections and geomatics surveying, which produced also a true orthophoto of the mosaic floor. Data has been organized in a geo-database, facilitating the exchange of information between different actors. Moreover, the management of data within a dedicated Geographic Information System (GIS), has allowed in-depth analysis for understanding the evolution of the iconographic repertoire that, over the centuries, has undergone several disfigurements due to the iconoclastic age. The knowledge of the mosaic has also been vital for the implementation of multimedia applications and for the creation of virtual experiences, in which the information can be conveyed and visualized directly on the virtual reconstruction of the whole archaeological site. The innovation of the proposed work, is therefore in the management of a data flow that can be exploited by different actors through different platforms: experts, thanks to the use of GIS, and visitors with the use of multimedia applications (such as Augmented Reality (AR) or highresolution web visualization) for dissemination purposes, in order to preserve this priceless mankind heritage.openMalinverni E.S.; Pierdicca R.; Di Stefano F.; Gabrielli R.; Albiero A.Malinverni, E. S.; Pierdicca, R.; Di Stefano, F.; Gabrielli, R.; Albiero, A

    Virtual museum enriched by GIS data to share science and culture. Church of Saint Stephen in Umm Ar-Rasas (Jordan)

    Full text link
    [EN] Umm ar-Rasas is a Jordan archaeological site, located 30 km southeast of the city of Madaba, in the northern part of Wadi Mujib. It preserves findings dating back the period from the end of 3rd to the 9th century AD and, since 2004, it belongs to the world heritage list of UNESCO. In 2015 a multidisciplinary work was undertaken over the archaeological site, mainly focusing on the Church of Saint Stephen, with the main purpose of enhancing the knowledge and documenting the conservation state of the polychrome mosaic floor, which covers the entire surface of the hall and presbytery. A huge amount of data has been collected, coming from archaeological and historical investigations, geophysics and geodetic inspections and geomatics surveying, which produced also a true orthophoto of the mosaic floor. Data has been organized in a geo-database, facilitating the exchange of information between different actors. Moreover, the management of data within a dedicated Geographic Information System (GIS), has allowed in-depth analysis for understanding the evolution of the iconographic repertoire that, over the centuries, has undergone several disfigurements due to the iconoclastic age. The knowledge of the mosaic has also been vital for the implementation of multimedia applications and for the creation of virtual experiences, in which the information can be conveyed and visualized directly on the virtual reconstruction of the whole archaeological site. The innovation of the proposed work, is therefore in the management of a data flow that can be exploited by different actors through different platforms: experts, thanks to the use of GIS, and visitors with the use of multimedia applications (such as Augmented Reality (AR) or highresolution web visualization) for dissemination purposes, in order to preserve this priceless mankind heritage.Highlights:Definition of a complete pipeline ranging from data acquisition to visualization in multi-channel multimedia applications.Management of heterogeneous data in Geographic Information Systems (GIS) and their exploitation in Augmented and Virtual Reality (AR/VR).GIS applied to the archaeological domain for expert and non-expert users.[ES] Umm er-Rasas es un sitio arqueológico de Jordania, ubicado a 30 km al sureste de la ciudad de Madaba, en la parte norte de Wadi Mujib. Conserva hallazgos que datan del período comprendido entre finales del siglo III y IX d.C. y, desde 2004, pertenece a la lista del patrimonio mundial de la UNESCO. En 2015, se realizó un trabajo multidisciplinar en el sitio arqueológico, que se centró principalmente en la Iglesia de San Esteban, con el propósito principal de mejorar el conocimiento y la documentación del estado de conservación del suelo con el mosaico policromado que cubre toda la superficie de la sala y el presbiterio. Se ha recopilado una gran cantidad de datos provenientes de investigaciones arqueológicas e históricas, inspecciones geofísicas y geodésicas y levantamientos geomáticos, que produjeron también una ortofoto verdadera del suelo con el mosaico. Los datos se han organizado en una geodatabase, facilitando el intercambio de información entre diferentes actores. Además, la gestión de los datos en un Sistema de Información Geográfica (SIG) dedicado, ha permitido un análisis profundo que facilita la comprensión de la evolución del repertorio iconográfico que, a lo largo de los siglos, ha sufrido varias desfiguraciones debido a la era iconoclasta. El conocimiento del mosaico también ha sido vital en la implementación de aplicaciones multimedia y en la creación de experiencias virtuales, en las que la información se puede transmitir y visualizar directamente en la reconstrucción virtual de todo el sitio arqueológico. La innovación del trabajo propuesto está, por lo tanto, en la gestión del flujo de datos que puede ser explotado por diferentes actores a través de diferentes plataformas: expertos, gracias al uso del SIG, y visitantes con el uso de las aplicaciones multimedia (como son la Realidad Aumentada (AR) o la visualización web de alta resolución) para fines de divulgación, con el fin de preservar este patrimonio incalculable de la humanidad.Malinverni, ES.; Pierdiccaa, R.; Di Stefano, F.; Gabrielli, R.; Albiero, A. (2019). Museo virtual enriquecido con datos GIS para compartir ciencia y cultura. La Iglesia de San Esteban en Umm er-Rasas (Jordania). Virtual Archaeology Review. 10(21):31-39. https://doi.org/10.4995/var.2019.11919SWORD31391021Anichini, F., Bini, D., Bini, M., Dubbini, N., Fabiani, F., Gattiglia, G., ... Steffè, S. (2012). MAPPAproject: Methodologies applied to archaeological potential predictivity. MapPapers, 1en-I, 23-43.Anichini, F., Fabiani, F., Gattiglia, G., & Gualandi, M. L. (2012). A database for archaeological data recording and analysis. MapPapers, 1en-II, 21-38.Baik, A., Yaagoubi, R., & Boehm, J. (2015). Integration of Jeddah historical BIM and 3D GIS for documentation and restoration of historical monument. International Society for Photogrammetry and Remote Sensing, XL-5/W7, 29-34. https://doi.org/10.5194/isprsarchives-XL-5-W7-29-2015Barrile, V., Fotia, A., Bilotta, G., & De Carlo, D. (2019). Integration of geomatics methodologies and creation of a cultural heritage app using augmented reality. Virtual Archaeology Review, 10(20), 40-51. https://doi.org/10.4995/var.2019.10361Blanco-Pons, S., Carrión-Ruiz, B., Lerma, J. L., & Villaverde, V. (2019). Design and implementation of an augmented reality application for rock art visualization in Cova dels Cavalls (Spain). Journal of Cultural Heritage. https://doi.org/10.1016/j.culher.2019.03.014Bruno, F., Bruno, S., De Sensi, G., Luchi, M. L., Mancuso, S., & Muzzupappa, M. (2010). From 3D reconstruction to virtual reality: A complete methodology for digital archaeological exhibition. Journal of Cultural Heritage, 11(1), 42-49. https://doi.org/10.1016/j.culher.2009.02.006Colosi, F., Fangi, G., Gabrielli, R., Orazi, R., Angelini, A., & Bozzi, C. A. (2009). Planning the Archaeological Park of Chan Chan (Peru) by means of satellite images, GIS and photogrammetry. Journal of Cultural Heritage, 10 (SUPPL. 1), 27-34. https://doi.org/10.1016/j.culher.2009.08.002d'Annibale, E., Tassetti, A. N., & Malinverni, E. S. (2014). Finalizing a low-cost photogrammetric workflow: from panoramic photos to Heritage 3D documentation and visualization. International Journal of Heritage in the Digital Era, 3(1), 33-49. https://doi.org/10.1260/2047-4970.3.1.33Dilek, A. P. S. E., Doğan, M., & Kozbe, G. (2019). The Influences of the Interactive Systems on Museum Visitors' Experience: A Comparative Study from Turkey. Journal of Tourism Intelligence and Smartness, 2(1), 27-38. Retrieved from http://dergipark.org.tr/jtis/issue/44975/559246Felicetti, A., Albiero, A., Gabrielli, R., Pierdicca, R., Paolanti, M., Zingaretti, P.,& Malinverni, E. S. (2018). Automatic Mosaic Digitalization: a Deep Learning approach to tessera segmentation. In METROARCHEO, IEEE International Conference on Metrology for Archaeology and Cultural Heritage. Cassino.Gabrielli, R., Portarena, D., & Franceschinis, M. (2017). Tecniche di documentazione dei tappeti musivi del sito archeologico di Umm Al-Rasas-Kastron Mefaa (Giordania). Archeologia e Calcolatori, 28(1), 201-218.Gabrielli, R., & Greco, G. (2018). Umm Ar-Rasas: The Application of Integrated Methodologies for the Valorization of a Unesco Site. Global Journal of Archaeology & Anthropology, 6(3), 555688. https://doi.org/10.19080/GJAA.2018.06.555688Han, D.-I. D., Weber, J., Bastiaansen, M., Mitas, O., & Lub, X. (2019). Virtual and augmented reality technologies to enhance the visitor experience in cultural tourism. In M. C. tom Dieck & T. Jung (Eds.), Augmented Reality and Virtual Reality (pp. 113-128). Cham: Springer. https://doi.org/10.1007/978-3-030-06246-0Hunter, J., Jateff, E., & van den Hengel, A. (2019). Using digital visualization of archival sources to enhance archaeological interpretation of the 'Life History'of Ships: The case study of HMCS/HMAS Protector. In J. McCarthy, J. Benjamin, T. Winton, & W. van Duivenvoorde (Eds.), 3D Recording and Interpretation for Maritime Archaeology (vol. 31, pp. 89-101). Cham: Springer. https://doi.org/10.1007/978-3-030-03635-5_6Kyriakou, P., & Hermon, S. (2019). Can I touch this? Using natural interaction in a Museum Augmented Reality System. Digital Applications in Archaeology and Cultural Heritage, 12. https://doi.org/10.1016/j.daach.2018.e00088Malinverni, E. S., Pierdicca, R., Giuliano, A., & Mariano, F. (2018). A geographical information system to support restoration activities: a methodological approach experienced upon the case study of Ascoli Satriano Fortress. Applied Geomatics, 10(4), 427-439. https://doi.org/10.1007/s12518-018-0216-4Ognibene, S. (2002). Umm al-Rasas. L'Erma di Bretschneider.Piccirillo, M. (1991). Il complesso di Santo Stefano a Umm al-Rasas Kastron Mefaa in Giordania (1986-1991). Liber Annuus Studii Biblici Franciscani, 41, 327-357.Piccirillo, M. (2008). La Palestina cristiana: I-VII secolo. EDB.Piccirillo, M., & Alliata, E. (1994). Umm al-Rasas Mayfa'ah I: gli scavi del complesso di Santo Stefano.Pierdicca, R., Frontoni, E., Malinverni, E. S., Colosi, F., & Orazi, R. (2016). Virtual reconstruction of archaeological heritage using a combination of photogrammetric techniques: Huaca Arco Iris, Chan Chan, Peru. Digital Applications in Archaeology and Cultural Heritage, 3(3), 80-90. https://doi.org/10.1016/j.daach.2016.06.002Pierdicca, R., Malinverni, E. S., Frontoni, E., Colosi, F., & Orazi, R. (2016). 3D visualization tools to explore ancient architectures in South America. Virtual Archaeology Review, 7(15), 44-53. https://doi.org/10.4995/var.2016.5904Rahaman, H., Champion, E., & Bekele, M. (2019). From photo to 3D to mixed reality: A complete workflow for cultural heritage visualisation and experience. Digital Applications in Archaeology and Cultural Heritage, 13. https://doi.org/10.1016/j.daach.2019.e00102Salonia, P., & Negri, A. (2003). Cultural Heritage emergency: GIS-based tools for assessing and deciding preservation. In Proceedings of the Twenty-Third Annual ESRI International User Conference, San Diego, CA, USA (pp. 7-11).Saygi, G., & Remondino, F. (2013). Management of architectural heritage information in BIM and GIS: State-of-the-art and future perspectives. Internationa

    A Bibliography on the Application of GIS in Archaeology and Cultural Heritage

    Get PDF
    Geographical Information Systems (GIS) applications to archaeological projects of different scales, chronological contexts and cultural milieux has accrued by now a long history and bibliography. Hopefully the phases of experimentation and almost blind testing are over, even if GIS applications are still sometimes being labeled as “new technologies”
    corecore