71 research outputs found

    Developing tools and methods for object-oriented mechatronics

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. [161]-166).The digital revolution has fundamentally changed our lives by giving us new ways to express ourselves through digital media. For example, accessible multimedia content creation tools allow people to instantiate their ideas and share them easily. However, most of these outcomes only exist on-screen and online. Despite the growing accessibility of digital design and fabrication tools the physical world and everyday objects surrounding us have been largely excluded from a parallel explosion of possibilities to express ourselves. Increasingly, webbased services allow professional and non-professional audiences to access computer-aided manufacturing (CAM) tools like 3D-printing and laser-cutting. Nonetheless, there are few (if any) design tools and methods for creating complex mechanical assemblies that take full advantage of CAM systems. Creating unique mechatronic artifacts or "originalMachines" requires more specific and sophisticated design tools than exist today. "Object-Oriented Mechatronics" is a parametric design approach that connects knowledge about mechanical assemblies and electronics with the requirements of digital manufacturing processes. Parametric instances like gears, bearing and servos are made available as objects within a CAD environment which can then be implemented into specific projects. The approach addresses the missing link between accessible rapid-manufacturing services and currently available design tools thereby creating new opportunities for self-expression through mechatronic objects and machines. The dissertation matches mechanical components and assemblies with rapid manufacturing methods by exploring transferability of conventional manufacturing techniques to appropriate rapid manufacturing tools. I rebuild various gearing and bearing principles like four-contact point bearings, cross roller bearings, spur and helical gears, planetary gears, cycloidal and harmonic gear reducers using the laser cutter, the CNC-mill and the 3D-printer. These explorations lead to more complex assemblies such as the PlywoodServo, 3DprintedClock and 3-DoF (Degree of Freedom) Head. The lessons from these explorations are summarized in a detailed "cook book" of novel mechatronic assemblies enabled by new fabrication tools. Furthermore, I use the results to develop a CAD tool that brings together several existing software packages and plug-ins including Rhino, Grasshopper and the Firefly experiments for Arduino, which will allow animation, fabrication and control of original machines. The tool is an example of an object-oriented design approach to mechatronic assemblies. A user calls a DoF (Degree of Freedom) object (parametric servo) with specific parameters like gearing and bearing types, motor options and control and communication capabilities. The DoF object then creates the corresponding geometry which can be connected and integrated with other actuators and forms. A group of roboticists and designers participated in a workshop to test the tool and make proposals for original machines using the tool. The dissertation has contributions on multiple levels. First, the actuator assembly examples and parametric design tool present a body of novel work that illustrates the benefits of going beyond off-the-shelf actuator assemblies and kit-of-parts for robotic objects. Second, this tool and the accompanying examples enable the design of more original machines with custom actuator assemblies using the latest digital fabrication tools. Finally, these explorations illustrate how new CAD/ CAM tools can facilitate an exchange between more design-oriented users and more engineering-oriented users.by Peter Schmitt.Ph.D

    Technology 2000, volume 1

    Get PDF
    The purpose of the conference was to increase awareness of existing NASA developed technologies that are available for immediate use in the development of new products and processes, and to lay the groundwork for the effective utilization of emerging technologies. There were sessions on the following: Computer technology and software engineering; Human factors engineering and life sciences; Information and data management; Material sciences; Manufacturing and fabrication technology; Power, energy, and control systems; Robotics; Sensors and measurement technology; Artificial intelligence; Environmental technology; Optics and communications; and Superconductivity

    Cable-driven parallel mechanisms for minimally invasive robotic surgery

    Get PDF
    Minimally invasive surgery (MIS) has revolutionised surgery by providing faster recovery times, less post-operative complications, improved cosmesis and reduced pain for the patient. Surgical robotics are used to further decrease the invasiveness of procedures, by using yet smaller and fewer incisions or using natural orifices as entry point. However, many robotic systems still suffer from technical challenges such as sufficient instrument dexterity and payloads, leading to limited adoption in clinical practice. Cable-driven parallel mechanisms (CDPMs) have unique properties, which can be used to overcome existing challenges in surgical robotics. These beneficial properties include high end-effector payloads, efficient force transmission and a large configurable instrument workspace. However, the use of CDPMs in MIS is largely unexplored. This research presents the first structured exploration of CDPMs for MIS and demonstrates the potential of this type of mechanism through the development of multiple prototypes: the ESD CYCLOPS, CDAQS, SIMPLE, neuroCYCLOPS and microCYCLOPS. One key challenge for MIS is the access method used to introduce CDPMs into the body. Three different access methods are presented by the prototypes. By focusing on the minimally invasive access method in which CDPMs are introduced into the body, the thesis provides a framework, which can be used by researchers, engineers and clinicians to identify future opportunities of CDPMs in MIS. Additionally, through user studies and pre-clinical studies, these prototypes demonstrate that this type of mechanism has several key advantages for surgical applications in which haptic feedback, safe automation or a high payload are required. These advantages, combined with the different access methods, demonstrate that CDPMs can have a key role in the advancement of MIS technology.Open Acces

    Study on the design of DIY social robots

    Get PDF

    Additive Manufacturing: Multi Material Processing and Part Quality Control

    Get PDF

    Proceedings of the 2018 Canadian Society for Mechanical Engineering (CSME) International Congress

    Get PDF
    Published proceedings of the 2018 Canadian Society for Mechanical Engineering (CSME) International Congress, hosted by York University, 27-30 May 2018

    Druckaktuierte zelluläre Strukturen

    Get PDF
    The herein presented investigations address the implementation of a holistic design process for Pressure-Actuated Cellular Structures (PACS) and include their realization and characterization. Similar to the motion of nastic plants, the actuation principle of these biologically inspired shape-variable structures bases on the controlled expansion of pressurized volumes. The advantages of fluidic actuation are combined with an adaptive single-curved structure that deforms continuously and with controllable stiffness between predefined states of shape. Benfits from the utilization of such a structure are expected within the fields of aeronautical, automobile, power and civil engineering. The identification of open issues, the development and the validation of design methods, as well as the evaluation of the performance of the concept of PACS are realized in consideration of the global system. A holistic solution for the design of PACS is successfully implemented and allows for the profound investigation on an experimental basis. The foundation for the evaluation and utilization of such shape-variable structures is thus laid.Die nachfolgenden Untersuchungen befassen sich mit der Entwicklung eines ganzheitlichen Entwurfsprozesses für Druckaktuierte Zelluläre Strukturen (PACS, engl.: Pressure-Actuated Cellular Structures), sowie deren Realisierung und Charakterisierung. Ähnlich dem Vorbild nastischer Pflanzen, basiert das Antriebsprinzip dieser biologisch inspirierten formvariablen Strukturen auf der Ausdehnung druckbeaufschlagter Volumina. Die Vorzüge fluidischer Aktuierung lassen sich dabei auf eine einfach gekrümmte Struktur übertragen, welche sich stufenlos und mit kontrollierbarer Steifigkeit zwischen spezifizierbaren Formzuständen deformieren lässt. Potentiale aus der Nutzung einer solchen Struktur ergeben sich unter anderem für die Bereiche Luftfahrt, Automobil- und Energietechnik sowie Bauwesen. Die Identifikation offener Problemfelder, die Entwicklung und Validierung von Entwurfsmethoden, sowie die Bewertung der Leistungsfähigkeit des Konzeptes der PACS erfolgen in dieser Arbeit über eine ganzheitliche Systembetrachtung. Das Konzept der PACS kann durch den Aufbau eines ganzheitlichen Entwurfsprozesses erstmals fundiert und auf experimenteller Basis untersucht werden. Die Grundlagen zur Bewertung und Nutzung solcher formvariabler Strukturen sind damit geschaffen

    NASA Tech Briefs, October 1995

    Get PDF
    A special focus in this issue is Data acquisition and analysis. Topics covered include : Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; and Mathematics and Information Sciences. Also included in this issue are Laser Tech Briefs and Industry Focus: Motion Control/ Positioning Equipmen
    corecore