235 research outputs found

    Wireless communication, identification and sensing technologies enabling integrated logistics: a study in the harbor environment

    Get PDF
    In the last decade, integrated logistics has become an important challenge in the development of wireless communication, identification and sensing technology, due to the growing complexity of logistics processes and the increasing demand for adapting systems to new requirements. The advancement of wireless technology provides a wide range of options for the maritime container terminals. Electronic devices employed in container terminals reduce the manual effort, facilitating timely information flow and enhancing control and quality of service and decision made. In this paper, we examine the technology that can be used to support integration in harbor's logistics. In the literature, most systems have been developed to address specific needs of particular harbors, but a systematic study is missing. The purpose is to provide an overview to the reader about which technology of integrated logistics can be implemented and what remains to be addressed in the future

    Implementation and Performance Evaluation of an NGN prototype using WiMax as an Access Technology

    Get PDF
    Telecommunications networks have evolved to IP-based networks, commonly known as Next Generation Networks (NGN). The biggest challenge in providing high quality realtime multimedia applications is achieving a Quality of Service (QoS) consistent with user expectations. One of the key additional factors affecting QoS is the existence of different QoS mechanisms on the heterogeneous technologies used on NGN platforms. This research investigates the techniques used to achieve consistent QoS on network technologies that use different QoS techniques. Numerous proposals for solving the end-to-end QoS problem in IP networks have adopted policy-based management, use of signalling protocols for communicating applications QoS requirements across different Network Elements and QoS provisioning in Network Elements. Such solutions are dependent on the use of traffic classification and knowledge of the QoS requirements of applications and services on the networks. This research identifies the practical difficulties involved in meeting the QoS requirements of network traffic between WiMax and an IP core network. In the work, a solution based on the concept of class-of-service mapping is proposed. In the proposed solution, QoS is implemented on the two networks and the concept of class-of-service mapping is used to integrate the two QoS systems. This essentially provides consistent QoS to applications as they traverse the two network domains and hence meet end-user QoS expectations. The work is evaluated through a NGN prototype to determine the capabilities of the networks to deliver real-time media that meets user expectations

    Solution analysis of universal wireless joint point technologies for heterogeneous tactical networks

    Get PDF
    The scope of this thesis is to analyze the feasibility of having different wireless mesh network architectures transfer data to a wired network via a joint (universal) access point (UAP). Additionally this thesis analyzes the feasibility of using similar joint (universal) access point technology to allow heterogeneous wireless mesh network devices in close proximally to the UAP transmit data to/from each other via the UAP. This research also includes evaluating COTS tools for possible implementation of a joint access point as well as seeking partnership with private industry to assist in research efforts and/or the development or joint (universal) access point solution(s). The thesis concludes with a recommendation on application of universal joint point technology, to include recommendations for implementation of such technology in the Tactical Network Topology (TNT) environment.http://archive.org/details/solutionnalysiso109452951Approved for public release; distribution is unlimited

    Smart PIN: performance and cost-oriented context-aware personal information network

    Get PDF
    The next generation of networks will involve interconnection of heterogeneous individual networks such as WPAN, WLAN, WMAN and Cellular network, adopting the IP as common infrastructural protocol and providing virtually always-connected network. Furthermore, there are many devices which enable easy acquisition and storage of information as pictures, movies, emails, etc. Therefore, the information overload and divergent content’s characteristics make it difficult for users to handle their data in manual way. Consequently, there is a need for personalised automatic services which would enable data exchange across heterogeneous network and devices. To support these personalised services, user centric approaches for data delivery across the heterogeneous network are also required. In this context, this thesis proposes Smart PIN - a novel performance and cost-oriented context-aware Personal Information Network. Smart PIN's architecture is detailed including its network, service and management components. Within the service component, two novel schemes for efficient delivery of context and content data are proposed: Multimedia Data Replication Scheme (MDRS) and Quality-oriented Algorithm for Multiple-source Multimedia Delivery (QAMMD). MDRS supports efficient data accessibility among distributed devices using data replication which is based on a utility function and a minimum data set. QAMMD employs a buffer underflow avoidance scheme for streaming, which achieves high multimedia quality without content adaptation to network conditions. Simulation models for MDRS and QAMMD were built which are based on various heterogeneous network scenarios. Additionally a multiple-source streaming based on QAMMS was implemented as a prototype and tested in an emulated network environment. Comparative tests show that MDRS and QAMMD perform significantly better than other approaches

    Security-centric analysis and performance investigation of IEEE 802.16 WiMAX

    Get PDF
    fi=vertaisarvioitu|en=peerReviewed

    Planning broadband infrastructure - a reference model

    Get PDF

    The Media Layers of the OSI (Open Systems Interconnection) Reference Model: A Tutorial

    Get PDF
    The Media Layers of the open systems interconnection (OSI) reference model convert bits to packets. It is a very important aspect of network communication and consists of various networking protocols. At the lowest level the physical layer deals with Media, Signal and Binary Transmission of Bits. Then there is the Data Link layer which deals with media access control (MAC) and logical link control (LLC) Physical Addressing of Frames, for example Ethernet. Finally, there is the Network layer which deals with Path Determination and IP Logical addressing of Packets. This article gives a review of these Media Layers and will contribute to adding knowledge for a networking novice while consolidating concepts for an experienced professional or academic

    Designing a Secure and Reliable Network Using EIGRP, VPN, DMZ and IDS/IPS

    Full text link
    Nowadays networking is not something new for us, we have hear about networking applications and problems every day at the present time. We can now easily communicate with each other despite the distance apart, exchange data, audio, video, and information. Network consists of Local Area Network (LAN) and Wide Area Network (WAN). Local Area Network is a computer network that covers only a small area networks, such as campus computer networks, buildings, offices, homes, or schools. While the Wide Area Network is a data communications network that operates beyond the geographic scope of the LAN. Knowing the applications, devices, and protocols before designing the network is very important to build a reliable and safe network. We have designed, build, and simulated a network using EIGRP, VPN, DMZ and IDS/IPS. The result of our simulation shows the network has a good performance, secure, and reliable

    Bit error rate estimation in WiMAX communications at vehicular speeds using Nakagami-m fading model

    Get PDF
    The wireless communication industry has experienced a rapid technological evolution from its basic first generation (1G) wireless systems to the latest fourth generation (4G) wireless broadband systems. Wireless broadband systems are becoming increasingly popular with consumers and the technological strength of 4G has played a major role behind the success of wireless broadband systems. The IEEE 802.16m standard of the Worldwide Interoperability for Microwave Access (WiMAX) has been accepted as a 4G standard by the Institute of Electrical and Electronics Engineers in 2011. The IEEE 802.16m is fully optimised for wireless communications in fixed environments and can deliver very high throughput and excellent quality of service. In mobile communication environments however, WiMAX consumers experience a graceful degradation of service as a direct function of vehicular speeds. At high vehicular speeds, the throughput drops in WiMAX systems and unless proactive measures such as forward error control and packet size optimisation are adopted and properly adjusted, many applications cannot be facilitated at high vehicular speeds in WiMAX communications. For any proactive measure, bit error rate estimation as a function of vehicular speed, serves as a useful tool. In this thesis, we present an analytical model for bit error rate estimation in WiMAX communications using the Nakagami-m fading model. We also show, through an analysis of the data collected from a practical WiMAX system, that the Nakagami-m model can be made adaptive as a function of speed, to represent fading in fixed environments as well as mobile environments
    corecore