272 research outputs found

    The Role of the Internet of Things in Network Resilience

    Get PDF
    Disasters lead to devastating structural damage not only to buildings and transport infrastructure, but also to other critical infrastructure, such as the power grid and communication backbones. Following such an event, the availability of minimal communication services is however crucial to allow efficient and coordinated disaster response, to enable timely public information, or to provide individuals in need with a default mechanism to post emergency messages. The Internet of Things consists in the massive deployment of heterogeneous devices, most of which battery-powered, and interconnected via wireless network interfaces. Typical IoT communication architectures enables such IoT devices to not only connect to the communication backbone (i.e. the Internet) using an infrastructure-based wireless network paradigm, but also to communicate with one another autonomously, without the help of any infrastructure, using a spontaneous wireless network paradigm. In this paper, we argue that the vast deployment of IoT-enabled devices could bring benefits in terms of data network resilience in face of disaster. Leveraging their spontaneous wireless networking capabilities, IoT devices could enable minimal communication services (e.g. emergency micro-message delivery) while the conventional communication infrastructure is out of service. We identify the main challenges that must be addressed in order to realize this potential in practice. These challenges concern various technical aspects, including physical connectivity requirements, network protocol stack enhancements, data traffic prioritization schemes, as well as social and political aspects

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    A survey on subjecting electronic product code and non-ID objects to IP identification

    Full text link
    Over the last decade, both research on the Internet of Things (IoT) and real-world IoT applications have grown exponentially. The IoT provides us with smarter cities, intelligent homes, and generally more comfortable lives. However, the introduction of these devices has led to several new challenges that must be addressed. One of the critical challenges facing interacting with IoT devices is to address billions of devices (things) around the world, including computers, tablets, smartphones, wearable devices, sensors, and embedded computers, and so on. This article provides a survey on subjecting Electronic Product Code and non-ID objects to IP identification for IoT devices, including their advantages and disadvantages thereof. Different metrics are here proposed and used for evaluating these methods. In particular, the main methods are evaluated in terms of their: (i) computational overhead, (ii) scalability, (iii) adaptability, (iv) implementation cost, and (v) whether applicable to already ID-based objects and presented in tabular format. Finally, the article proves that this field of research will still be ongoing, but any new technique must favorably offer the mentioned five evaluative parameters.Comment: 112 references, 8 figures, 6 tables, Journal of Engineering Reports, Wiley, 2020 (Open Access

    Crocs: Cross-Technology Clock Synchronization for WiFi and ZigBee

    Full text link
    Clock synchronization is a key function in embedded wireless systems and networks. This issue is equally important and more challenging in IoT systems nowadays, which often include heterogeneous wireless devices that follow different wireless standards. Conventional solutions to this problem employ gateway-based indirect synchronization, which suffers low accuracy. This paper for the first time studies the problem of cross-technology clock synchronization. Our proposal called Crocs synchronizes WiFi and ZigBee devices by direct cross-technology communication. Crocs decouples the synchronization signal from the transmission of a timestamp. By incorporating a barker-code based beacon for time alignment and cross-technology transmission of timestamps, Crocs achieves robust and accurate synchronization among WiFi and ZigBee devices, with the synchronization error lower than 1 millisecond. We further make attempts to implement different cross-technology communication methods in Crocs and provide insight findings with regard to the achievable accuracy and expected overhead

    The use of Sensor Networks to create smart environments

    Get PDF
    Internet of Things is taking the world in order to be the next big thing since the Internet, with almost every object being connected to gather data and allow control through mobile and web devices. But this revolution has some barriers with the lack of standardization in communications or sensors. In this dissertation we present a proposal of a system dedicated to creating smart environments using sensor networks, with a practical application developed to achieve automation, efficiency and versatility, allowing real-time monitoring and remote control of any object or environment improving user experience, tasks efficiency and leading to costs reduction. The developed system, that includes software and hardware, is based on adaptive and Artificial Intelligence algorithms and low cost IoT devices, taking advantage of the best communication protocols, allowing the developed system to be suited and easily adapted to any specification by any person. We evaluate the best communication and devices for the desired implementa tion and demonstrate how to create all the network nodes, including the build of a custom IoT Gateway and Sensor Node. We also demonstrate the efficiency of the developed system in real case scenarios. The main contributions of our study are the design and implementation of a novel architecture for adaptive IoT projects focus on environment efficiency, with practical demonstration, as well as comparison study for the best suited communication protocols for low cost IoT devices.A Internet of Things está a atingir o mundo de modo a tornar-se a próxima grande revolução depois da Internet, com quase todos os objectos a estarem ligados para recolher dados e permitir o controlo através de dispositivos móveis. Mas esta revolução depara-se com vários desafios devido à falta de standards no que toca a comunicações ou sensores. Nesta dissertação apresentamos uma proposta para um sistema dedicado a criar ambientes inteligentes usando redes de sensores, com uma aplicação prática desenvolvida para oferecer automação, eficiência e versatilidade, permitindo uma monitorização e controlo remoto seguro em tempo real de qualquer objecto ou ambiente, melhorando assim a experiência do utilizador e a eficiência das tarefas evando a redução de custos. O sistema desenvolvido, que inclui software e hard ware, usa algoritmos adaptáveis com Inteligência Artificial e dispositivos IoT de baixo custo, utilizando os melhores protocolos de comunicação, permitindo que o mesmo seja apropriado e facilmente adaptado para qualquer especificação por qualquer pessoa. Avaliamos os melhores métodos de comunicação e dispositivos necessários para a implementação e demonstramos como criar todos os nós da rede, incluindo a construção de IoT Gateway e Sensor Node personalizados. Demonstramos também a eficácia do sistema desenvolvido através da aplicação do mesmo em casos reais. As principais contribuições do nosso estudo passam pelo desenho e implemen tação de uma nova arquitectura para projectos adaptáveis de IoT com foco na eficiência do objecto, incluindo a demonstração pratica, tal como um estudo com parativo sobre os melhores protocolos de comunicação para dispositivos IoT de baixo custo

    New Challenges in the Design of Microgrid Systems:Communication Networks, Cyberattacks, and Resilience

    Get PDF
    corecore