381 research outputs found

    Apollo experience report guidance and control systems: Primary guidance, navigation, and control system development

    Get PDF
    The primary guidance, navigation, and control systems for both the lunar module and the command module are described. Development of the Apollo primary guidance systems is traced from adaptation of the Polaris Mark II system through evolution from Block I to Block II configurations; the discussion includes design concepts used, test and qualification programs performed, and major problems encountered. The major subsystems (inertial, computer, and optical) are covered. Separate sections on the inertial components (gyroscopes and accelerometers) are presented because these components represent a major contribution to the success of the primary guidance, navigation, and control system

    Isolated resonator gyroscope with isolation trimming using a secondary element

    Get PDF
    The present invention discloses a resonator gyroscope including an isolated resonator. One or more flexures support the isolated resonator and a baseplate is affixed to the resonator by the flexures. Drive and sense elements are affixed to the baseplate and used to excite the resonator and sense movement of the gyroscope. In addition, at least one secondary element (e.g., another electrode) is affixed to the baseplate and used for trimming isolation of the resonator. The resonator operates such that it transfers substantially no net momentum to the baseplate when the resonator is excited. Typically, the isolated resonator comprises a proof mass and a counterbalancing plate

    Isolated resonator gyroscope with a drive and sense plate

    Get PDF
    The present invention discloses a resonator gyroscope comprising a vibrationally isolated resonator including a proof mass, a counterbalancing plate having an extensive planar region, and one or more flexures interconnecting the proof mass and counterbalancing plate. A baseplate is affixed to the resonator by the one or more flexures and sense and drive electrodes are affixed to the baseplate proximate to the extensive planar region of the counterbalancing plate for exciting the resonator and sensing movement of the gyroscope. The isolated resonator transfers substantially no net momentum to the baseplate when the resonator is excited

    Developments in Pursuit of a Micro-Optic Gyroscope

    Full text link

    Readout Method And Electronic Bandwidth Control For A Silicon In-plane Tuning Fork Gyroscope

    Get PDF
    Disclosed are methods and a sensor architecture that utilizes the residual quadrature error in a gyroscope to achieve and maintain perfect mode-matching, i.e., ~0 Hz split between the drive and sense mode frequencies, and to electronically control sensor bandwidth. In a reduced-to-practice embodiment, a 6 mW, 3V CMOS ASIC and control algorithm are interfaced to a mode-matched MEMS tuning fork gyroscope to implement an angular rate sensor with bias drift as low as 0.15°/hr and angle random walk of 0.003°/√hr, which is the lowest recorded to date for a silicon MEMS gyroscope. The system bandwidth can be configured between 0.1 Hz and 1 kHz.Georgia Tech Research Coporatio

    Electrostatic spring softening in redundant degree of freedom resonators

    Get PDF
    The present invention discloses an isolated electrostatic biased resonator gyroscope. The gyroscope includes an isolated resonator having a first and a second differential vibration mode, a baseplate supporting the isolated resonator, a plurality of excitation affixed to the baseplate for exciting the first differential vibration mode, a plurality of sensing electrodes affixed to the baseplate for sensing movement of the gyroscope through the second differential vibration mode and a plurality of bias electrodes affixed to the baseplate for trimming isolation of the resonator and substantially minimizing frequency split between the first and second differential vibration modes. Typically, the isolated resonator comprises a proof mass and a counterbalancing plate with the bias electrodes disposed on the baseplate below

    Apollo guidance, navigation and control - Design survey of the Apollo inertial subsystem

    Get PDF
    Design, development, and testing of inertial guidance and navigation systems for Apollo projec

    Readout Method And Electronic Bandwidth Control For A Silicon In-plane Tuning Fork Gyroscope

    Get PDF
    Disclosed are methods and a sensor architecture that utilizes the residual quadrature error in a gyroscope to achieve and maintain perfect mode-matching, i.e., ~0 Hz split between the drive and sense mode frequencies, and to electronically control sensor bandwidth. In a reduced-to-practice embodiment, a 6 mW, 3V CMOS ASIC and control algorithm are interfaced to a mode-matched MEMS tuning fork gyroscope to implement an angular rate sensor with bias drift as low as 0.15°/hr and angle random walk of 0.003°/√hr, which is the lowest recorded to date for a silicon MEMS gyroscope. The system bandwidth can be configured between 0.1 Hz and 1 kHz.Georgia Tech Research Corporatio

    Innovative Solutions for Navigation and Mission Management of Unmanned Aircraft Systems

    Get PDF
    The last decades have witnessed a significant increase in Unmanned Aircraft Systems (UAS) of all shapes and sizes. UAS are finding many new applications in supporting several human activities, offering solutions to many dirty, dull, and dangerous missions, carried out by military and civilian users. However, limited access to the airspace is the principal barrier to the realization of the full potential that can be derived from UAS capabilities. The aim of this thesis is to support the safe integration of UAS operations, taking into account both the user's requirements and flight regulations. The main technical and operational issues, considered among the principal inhibitors to the integration and wide-spread acceptance of UAS, are identified and two solutions for safe UAS operations are proposed: A. Improving navigation performance of UAS by exploiting low-cost sensors. To enhance the performance of the low-cost and light-weight integrated navigation system based on Global Navigation Satellite System (GNSS) and Micro Electro-Mechanical Systems (MEMS) inertial sensors, an efficient calibration method for MEMS inertial sensors is required. Two solutions are proposed: 1) The innovative Thermal Compensated Zero Velocity Update (TCZUPT) filter, which embeds the compensation of thermal effect on bias in the filter itself and uses Back-Propagation Neural Networks to build the calibration function. Experimental results show that the TCZUPT filter is faster than the traditional ZUPT filter in mapping significant bias variations and presents better performance in the overall testing period. Moreover, no calibration pre-processing stage is required to keep measurement drift under control, improving the accuracy, reliability, and maintainability of the processing software; 2) A redundant configuration of consumer grade inertial sensors to obtain a self-calibration of typical inertial sensors biases. The result is a significant reduction of uncertainty in attitude determination. In conclusion, both methods improve dead-reckoning performance for handling intermittent GNSS coverage. B. Proposing novel solutions for mission management to support the Unmanned Traffic Management (UTM) system in monitoring and coordinating the operations of a large number of UAS. Two solutions are proposed: 1) A trajectory prediction tool for small UAS, based on Learning Vector Quantization (LVQ) Neural Networks. By exploiting flight data collected when the UAS executes a pre-assigned flight path, the tool is able to predict the time taken to fly generic trajectory elements. Moreover, being self-adaptive in constructing a mathematical model, LVQ Neural Networks allow creating different models for the different UAS types in several environmental conditions; 2) A software tool aimed at supporting standardized procedures for decision-making process to identify UAS/payload configurations suitable for any type of mission that can be authorized standing flight regulations. The proposed methods improve the management and safe operation of large-scale UAS missions, speeding up the flight authorization process by the UTM system and supporting the increasing level of autonomy in UAS operations
    • …
    corecore