1,894 research outputs found

    Placement driven retiming with a coupled edge timing model

    Get PDF
    Retiming is a widely investigated technique for performance optimization. It performs powerful modifications on a circuit netlist. However, often it is not clear, whether the predicted performance improvement will still be valid after placement has been performed. This paper presents a new retiming algorithm using a highly accurate timing model taking into account the effect of retiming on capacitive loads of single wires as well as fanout systems. We propose the integration of retiming into a timing-driven standard cell placement environment based on simulated annealing. Retiming is used as an optimization technique throughout the whole placement process. The experimental results show the benefit of the proposed approach. In comparison with the conventional design flow based on standard FEAS our approach achieved an improvement in cycle time of up to 34% and 17% on the average

    From FPGA to ASIC: A RISC-V processor experience

    Get PDF
    This work document a correct design flow using these tools in the Lagarto RISC- V Processor and the RTL design considerations that must be taken into account, to move from a design for FPGA to design for ASIC

    Automatic synthesis and optimization of chip multiprocessors

    Get PDF
    The microprocessor technology has experienced an enormous growth during the last decades. Rapid downscale of the CMOS technology has led to higher operating frequencies and performance densities, facing the fundamental issue of power dissipation. Chip Multiprocessors (CMPs) have become the latest paradigm to improve the power-performance efficiency of computing systems by exploiting the parallelism inherent in applications. Industrial and prototype implementations have already demonstrated the benefits achieved by CMPs with hundreds of cores.CMP architects are challenged to take many complex design decisions. Only a few of them are:- What should be the ratio between the core and cache areas on a chip?- Which core architectures to select?- How many cache levels should the memory subsystem have?- Which interconnect topologies provide efficient on-chip communication?These and many other aspects create a complex multidimensional space for architectural exploration. Design Automation tools become essential to make the architectural exploration feasible under the hard time-to-market constraints. The exploration methods have to be efficient and scalable to handle future generation on-chip architectures with hundreds or thousands of cores.Furthermore, once a CMP has been fabricated, the need for efficient deployment of the many-core processor arises. Intelligent techniques for task mapping and scheduling onto CMPs are necessary to guarantee the full usage of the benefits brought by the many-core technology. These techniques have to consider the peculiarities of the modern architectures, such as availability of enhanced power saving techniques and presence of complex memory hierarchies.This thesis has several objectives. The first objective is to elaborate the methods for efficient analytical modeling and architectural design space exploration of CMPs. The efficiency is achieved by using analytical models instead of simulation, and replacing the exhaustive exploration with an intelligent search strategy. Additionally, these methods incorporate high-level models for physical planning. The related contributions are described in Chapters 3, 4 and 5 of the document.The second objective of this work is to propose a scalable task mapping algorithm onto general-purpose CMPs with power management techniques, for efficient deployment of many-core systems. This contribution is explained in Chapter 6 of this document.Finally, the third objective of this thesis is to address the issues of the on-chip interconnect design and exploration, by developing a model for simultaneous topology customization and deadlock-free routing in Networks-on-Chip. The developed methodology can be applied to various classes of the on-chip systems, ranging from general-purpose chip multiprocessors to application-specific solutions. Chapter 7 describes the proposed model.The presented methods have been thoroughly tested experimentally and the results are described in this dissertation. At the end of the document several possible directions for the future research are proposed

    Course grained low power design flow using UPF

    Get PDF
    Increased system complexity has led to the substitution of the traditional bottom-up design flow by systematic hierarchical design flow. The main motivation behind the evolution of such an approach is the increasing difficulty in hardware realization of complex systems. With decreasing channel lengths, few key problems such as timing closure, design sign-off, routing complexity, signal integrity, and power dissipation arise in the design flows. Specifically, minimizing power dissipation is critical in several high-end processors. In high-end processors, the design complexity contributes to the overall dynamic power while the decreasing transistor size results in static power dissipation. This research aims at optimizing the design flow for power and timing using the unified power format (UPF). UPF provides a strategic format to specify power-aware design information at every stage in the flow. The low power reduction techniques enforced in this research are multi-voltage, multi-threshold voltage (Vth), and power gating with state retention. An inherent design challenge addressed in this research is the choice of power optimization techniques as the flow advances from synthesis to physical design. A top-down digital design flow for a 32 bit MIPS RISC processor has been implemented with and without UPF synthesis flow for 65nm technology. The UPF synthesis is implemented with two voltages, 1.08V and 0.864V (Multi-VDD). Area, power and timing metrics are analyzed for the flows developed. Power savings of about 20 % are achieved in the design flow with \u27multi-threshold\u27 power technique compared to that of the design flow with no low power techniques employed. Similarly, 30 % power savings are achieved in the design flow with the UPF implemented when compared to that of the design flow with \u27multi-threshold\u27 power technique employed. Thus, a cumulative power savings of 42% has been achieved in a complete power efficient design flow (UPF) compared to that of the generic top-down standard flow with no power saving techniques employed. This is substantiated by the low voltage operation of modules in the design, reduction in clock switching power by gating clocks in the design and extensive use of HVT and LVT standard cells for implementation. The UPF synthesis flow saw the worst timing slack and more area when compared to those of the `multi-threshold\u27 or the generic flow. Percentage increase in the area with UPF is approximately 15%; a significant source for this increase being the additional power controlling logic added

    Toward fast and accurate architecture exploration in a hardware/software codesign flow

    Get PDF
    • …
    corecore