181 research outputs found

    A review of spatial downscaling of satellite remotely sensed soil moisture

    Get PDF
    Satellite remote sensing technology has been widely used to estimate surface soil moisture. Numerous efforts have been devoted to develop global soil moisture products. However, these global soil moisture products, normally retrieved from microwave remote sensing data, are typically not suitable for regional hydrological and agricultural applications such as irrigation management and flood predictions, due to their coarse spatial resolution. Therefore, various downscaling methods have been proposed to improve the coarse resolution soil moisture products. The purpose of this paper is to review existing methods for downscaling satellite remotely sensed soil moisture. These methods are assessed and compared in terms of their advantages and limitations. This review also provides the accuracy level of these methods based on published validation studies. In the final part, problems and future trends associated with these methods are analyzed

    Characteristics of the Global Radio Frequency Interference in the Protected Portion of L-Band

    Get PDF
    The National Aeronautics and Space Administration’s (NASA’s) Soil Moisture Active–Passive (SMAP) radiometer has been providing geolocated power moments measured within a 24 MHz band in the protected portion of L-band, i.e., 1400–1424 MHz, with 1.2 ms and 1.5 MHz time and frequency resolutions, as its Level 1A data. This paper presents important spectral and temporal properties of the radio frequency interference (RFI) in the protected portion of L-band using SMAP Level 1A data. Maximum and average bandwidth and duration of RFI signals, average RFI-free spectrum availability, and variations in such properties between ascending and descending satellite orbits have been reported across the world. The average bandwidth and duration of individual RFI sources have been found to be usually less than 4.5 MHz and 4.8 ms; and the average RFI-free spectrum is larger than 20 MHz in most regions with exceptions over the Middle East and Central and Eastern Asia. It has also been shown that, the bandwidth and duration of RFI signals can vary as much as 10 MHz and 10 ms, respectively, between ascending and descending orbits over certain locations. Furthermore, to identify frequencies susceptible to RFI contamination in the protected portion of L-band, observed RFI signals have been assigned to individual 1.5 MHz SMAP channels according to their frequencies. It has been demonstrated that, contrary to common perception, the center of the protected portion can be as RFI contaminated as its edges. Finally, there have been no significant correlations noted among different RFI properties such as amplitude, bandwidth, and duration within the 1400–1424 MHz ban

    Synergistic optical and microwave remote sensing approaches for soil moisture mapping at high resolution

    Get PDF
    Aplicat embargament des de la data de defensa fins al dia 1 d'octubre de 2022Soil moisture is an essential climate variable that plays a crucial role linking the Earth’s water, energy, and carbon cycles. It is responsible for the water exchange between the Earth’s surface and the atmosphere, and provides key information about soil evaporation, plant transpiration, and the allocation of precipitation into runoff, surface flow and infiltration. Therefore, an accurate estimation of soil moisture is needed to enhance our current climate and meteorological forecasting skills, and to improve our current understanding of the hydrological cycle and its extremes (e.g., droughts and floods). L-band Microwave passive and active sensors have been used during the last decades to estimate soil moisture, since there is a strong relationship between this variable and the soil dielectric properties. Currently, there are two operational L-band missions specifically devoted to globally measure soil moisture: the ESA’s Soil Moisture and the Ocean Salinity (SMOS), launched in November 2009; and the NASA’s Soil Moisture Active Passive (SMAP), launched in January 2015. The spatial resolution of the SMOS and SMAP radiometers, in the order of tens of kilometers (~40 km), is adequate for global applications. However, to fulfill the needs of a growing number of applications at local or regional scale, higher spatial detail (< 1 km) is required. To bridge this gap and improve the spatial resolution of the soil moisture maps, a variety of spatial enhancement or spatial (sub-pixel) disaggregation approaches have been proposed. This Ph.D. Thesis focuses on the study of the Earth’s surface soil moisture from remotely sensed observations. This work includes the implementation of several soil moisture retrieval techniques and the development, implementation, validation and comparison of different spatial enhancement or downscaling techniques, applied at local, regional, and continental scale. To meet these objectives, synergies between several active/passive microwave sensors (SMOS, SMAP and Sentinel-1) and optical/thermal sensors (MODIS) have been explored. The results are presented as follows: - Spatially consistent downscaling approach for SMOS using an adaptive moving window A passive microwave/optical downscaling algorithm for SMOS is proposed to obtain fine-scale soil moisture maps (1 km) from the native resolution (~40 km) of the instrument. This algorithm introduces the concept of a shape-adaptive window as a central improvement of the disaggregation technique presented by Piles et al. (2014), allowing its application at continental scales. - Assessment of multi-scale SMOS and SMAP soil moisture products across the Iberian Peninsula The temporal and spatial characteristics of SMOS and SMAP soil moisture products at coarse- and fine-scales are assessed in order to learn about their distinct features and the rationale behind them, tracing back to the physical assumptions they are based upon. - Impact of incidence angle diversity on soil moisture retrievals at coarse and fine scales An incidence angle (32.5°, 42.5° and 52.5°)-adaptive calibration of radiative transfer effective parameters single scattering albedo and soil roughness has been carried out, highlighting the importance of such parameterization to accurately estimate soil moisture at coarse-resolution. Then, these parameterizations are used to examine the potential application of a physically-based active-passive downscaling approach to upcoming microwave missions, namely CIMR, ROSE-L and Sentinel-1 Next Generation. Soil moisture maps obtained for the Iberian Peninsula at the three different angles, and at coarse and fine scales are inter-compared using in situ measurements and model data as benchmarks.La humedad del suelo es una variable climática esencial que juega un papel crucial en la relación de los ciclos del agua, la energía y el carbono de la Tierra. Es responsable del intercambio de agua entre la superficie de la Tierra y la atmósfera, y proporciona información crucial sobre la evaporación del suelo, la transpiración de las plantas y la distribución de la precipitación en escorrentía, flujo superficial e infiltración. Por lo tanto, es necesaria una estimación precisa de la humedad del suelo para mejorar las predicciones climáticas y meteorológicas, y comprender mejor el ciclo hidrológico y sus extremos (v.g., sequías e inundaciones). Los sensores pasivos y activos en banda L se han usado durante las últimas décadas para estimar la humedad del suelo debido a la relación directa que existe entre esta variable y las propiedades dieléctricas del suelo. Actualmente, hay dos misiones operativas en banda L específicamente dedicadas a medir la humedad del suelo a escala global: la misión Soil Moisture and Ocean Salinity (SMOS) de la ESA, lanzada en noviembre de 2009; y la misión Soil Moisture Active Passive (SMAP) de la NASA, lanzada en enero de 2015. La resolución espacial de los radiómetros SMOS y SMAP, del orden de unas decenas de kilómetros (~40 km), es adecuada para aplicaciones a escala global. Sin embargo, para satisfacer las necesidades de un número creciente de aplicaciones a escala local o regional, se requiere más detalle espacial (<1 km). Para solventar esta limitación y mejorar la resolución espacial de los mapas de humedad, se han propuesto diferentes técnicas de mejora o desagregación espacial. Esta Tesis se centra en el estudio de la humedad de la superficie terrestre a partir de datos obtenidos a través de teledetección. Este trabajo incluye la implementación de distintos algoritmos de recuperación de la humedad del suelo y el desarrollo, implementación, validación y comparación de distintas técnicas de desagregación, aplicadas a escala local, regional y continental. Para cumplir estos objetivos, se han explorado sinergias entre diferentes sensores de microondas activos/pasivos (SMOS, SMAP y Sentinel-1) y sensores ópticos/térmicos. Los resultados se presentan de la siguiente manera: - Técnica de desagregación espacialmente consistente, basada en una ventana móvil adaptativa, aplicada a los datos SMOS Se propone un algoritmo de desagregación del píxel basado en datos obtenidos de medidas radiométricas de microondas en banda L y datos ópticos, para mejorar la resolución espacial de los mapas de humedad del suelo desde la resolución nativa del instrumento (~40 km) hasta resoluciones de 1 km. El algoritmo introduce el concepto de una ventana de contorno adaptativo, como mejora principal sobre la técnica de desagregación presentada en Piles et al. (2014), permitiendo su implementación a escala continental. - Análisis multiescalar de productos de humedad del suelo SMAP y SMOS sobre la Península Ibérica Se han evaluado las características temporales y espaciales de distintos productos de humedad del suelo SMOS y SMAP, a baja y a alta resolución, para conocer sus características distintivas y comprender las razones de sus diferencias. Para ello, ha sido necesario rastrear los supuestos físicos en los que se basan. - Impacto del ángulo de incidencia en la recuperación de la humedad del suelo a baja y a alta resolución Se ha llevado a cabo una calibración adaptada al ángulo de incidencia (32.5°, 42.5° y 52.5°) de los parámetros efectivos, albedo de dispersión simple y rugosidad del suelo, descritos en el modelo de transferencia radiativa � − �, incidiendo en la importancia de esta parametrización para estimar la humedad del suelo de forma precisa a baja resolución. El resultado de las mismas se ha utilizado para estudiar la potencial aplicación de un algoritmo activo/pasivo de desagregación basado en la física para las próximas misiones de microondas, llamadas CIMR, ROSE-L y Sentinel-1 Next Generation. Los mapas de humedad recuperados a los tres ángulos de incidencia, tanto a baja como a alta resolución, se han obtenido para la Península Ibérica y se han comparado entre ellos usando como referencia mediciones de humedad in situ.Postprint (published version

    Information Theoretic Evaluation of Satellite Soil Moisture Retrievals

    Get PDF
    Microwave radiometry has a long legacy of providing estimates of remotely sensed near surfacesoil moisture measurements over continental and global scales. A consistent assessment of theerrors and uncertainties associated with these retrievals is important for their effective utilization in modeling, data assimilation and end-use application environments. This article presents an evaluationof soil moisture retrieval products from AMSR-E, ASCAT, SMOS, AMSR2 and SMAPinstruments using information theory-based metrics. These metrics rely on time series analysis ofsoil moisture retrievals for estimating the measurement error, level of randomness (entropy) andregularity (complexity) of the data. The results of the study indicate that the measurement errors inthe remote sensing retrievals are significantly larger than that of the ground soil moisture measurements.The SMAP retrievals, on the other hand, were found to have reduced errors (comparable to Preprint submitted to Remote Sensing of Environment October 1, 2017those of in-situ datasets), particularly over areas with moderate vegetation. The SMAP retrievals also demonstrate high information content relative to other retrieval products, with higher levelsof complexity and reduced entropy. Finally, a joint evaluation of the entropy and complexity ofremotely sensed soil moisture products indicates that the information content of the AMSR-E, ASCAT,SMOS and AMSR2 retrievals is low, whereas SMAP retrievals show better performance. The use of information theoretic assessments is effective in quantifying the required levels of improvements needed in the remote sensing soil moisture retrievals to enhance their utility and information content

    Land Surface Data Assimilation of Satellite Derived Surface Soil Moisture : Towards an Integrated Representation of the Arctic Hydrological Cycle

    Get PDF
    The ability to accurately determine soil water content (soil moisture) over large areas of the Earth’s surface has potential implications in meteorology, hydrology, water and natural hazards management. The advent of space-based microwave sensors, found to be sensitive to surface soil moisture, has allowed for long-term studies of soil moisture dynamics at the global scale. There are, however, areas where remote sensing of soil moisture is prone to errors because, e.g., complex topography, surface water, dense vegetation, frozen soil or snow cover affect the retrieval. This is particularly the case for the northern high latitudes, which is a region subject to more rapid warming than the global mean and also is identified as an important region for studying 21st century climate change. Land surface models can help to close these observation gaps and provide high spatiotemporal coverage of the variables of interest. Models are only approximations of the real world and they can experience errors in, for example, their initialization and/or parameterization. In the past 20 years the research field of land surface data assimilation has undergone rapid developments, and it has provided a potential solution to the aforementioned problems. Land surface data assimilation offers a compromise between model and observations, and by minimization of their total errors it creates an analysis state which is superior to the model and observation alone. This thesis focuses on the implementation of a land surface data assimilation system, its applications and how to improve the separate elements that goes into such a framework. My ultimate goal is to improve the representation of soil moisture over northern high latitudes using land surface data assimilation. In my three papers, I first show how soil moisture data assimilation can correct random errors in the precipitation fields used to drive the land surface model. A result which indicates that a land surface model, driven by uncorrected precipitation, can have the same skill as a land surface model driven by bias-corrected precipitation. I show that passive microwave remote sensing can be utilized to monitor drought over regions of the world where this was thought to be impractical. I do this by creating a novel drought index based on passive microwave observations, and I validate the new index by comparing it with output from a land surface data assimilation system. Finally, I address knowledge gaps in the modelling of microwave emissions over northern high latitudes. In particular, I study the impact of neglecting multiplescattering terms from vegetation in the radiative transfer models of microwave emission. My three papers show that: (i) land surface data assimilation can improve surface soil moisture estimates at regional scales, (ii) passive microwave observations carries more information about the land surface over northern high latitudes than explored in the retrieval processing chain and (iii) including multiple-scattering terms in microwave radiative transfer models has the potential to increase the sensitivity for surface soil moisture below dense vegetation, and decrease biases between modelled and observed brightness temperature. In sum, my three papers lay the foundation for a land data assimilation system applicable to monitor the hydrological cycle over northern high latitudes

    Multi-temporal evaluation of soil moisture and land surface temperature dynamics using in situ and satellite observations

    Get PDF
    Soil moisture (SM) is an important component of the Earth’s surface water balance and by extension the energy balance, regulating the land surface temperature (LST) and evapotranspiration (ET). Nowadays, there are two missions dedicated to monitoring the Earth’s surface SM using L-band radiometers: ESA’s Soil Moisture and Ocean Salinity (SMOS) and NASA’s Soil Moisture Active Passive (SMAP). LST is remotely sensed using thermal infrared (TIR) sensors on-board satellites, such as NASA’s Terra/Aqua MODIS or ESA & EUMETSAT’s MSG SEVIRI. This study provides an assessment of SM and LST dynamics at daily and seasonal scales, using 4 years (2011–2014) of in situ and satellite observations over the central part of the river Duero basin in Spain. Specifically, the agreement of instantaneous SM with a variety of LST-derived parameters is analyzed to better understand the fundamental link of the SM–LST relationship through ET and thermal inertia. Ground-based SM and LST measurements from the REMEDHUS network are compared to SMOS SM and MODIS LST spaceborne observations. ET is obtained from the HidroMORE regional hydrological model. At the daily scale, a strong anticorrelation is observed between in situ SM and maximum LST (R ˜ -0.6 to -0.8), and between SMOS SM and MODIS LST Terra/Aqua day (R ˜ - 0.7). At the seasonal scale, results show a stronger anticorrelation in autumn, spring and summer (in situ R ˜ -0.5 to -0.7; satellite R ˜ -0.4 to -0.7) indicating SM–LST coupling, than in winter (in situ R ˜ +0.3; satellite R ˜ -0.3) indicating SM–LST decoupling. These different behaviors evidence changes from water-limited to energy-limited moisture flux across seasons, which are confirmed by the observed ET evolution. In water-limited periods, SM is extracted from the soil through ET until critical SM is reached. A method to estimate the soil critical SM is proposed. For REMEDHUS, the critical SM is estimated to be ~0.12 m3/m3 , stable over the study period and consistent between in situ and satellite observations. A better understanding of the SM–LST link could not only help improving the representation of LST in current hydrological and climate prediction models, but also refining SM retrieval or microwave-optical disaggregation algorithms, related to ET and vegetation status.Peer ReviewedPostprint (published version

    Analyse des cycles gel/dégel des régions nordiques par télédétection micro-ondes passives en bande L

    Get PDF
    Le réchauffement climatique dans les régions nordiques, fort important depuis le milieu du siècle dernier, a de multiples impacts sur la dynamique des écosystèmes, notamment sur les cycles gel/dégel de surface qui influencent les flux de carbone, l'activité biogéochimique des sols, l'hydrologie et le pergélisol aux hautes latitudes. La télédétection satellitaire du gel/dégel par micro-ondes passives est un outil très prometteur permettant un suivi continu et global, mais comporte des difficultés souvent reliées à l’effet d’hétérogénéité spatiale intra-pixel relié aux résolutions grossières des capteurs micro-ondes passives à basse fréquence. L’objectif principal du projet est d’évaluer l’utilisation de la télédétection micro-onde passive en bande L (1.4 GHz) pour le suivi de l’état de gel/dégel de la surface en forêt boréale. Un premier objectif spécifique est d’évaluer un nouveau produit des cycles de gel/dégel de surface estimée à partir des radiomètres bande L satellitaires Aquarius. Cette base de données de 3.5 années a été mise en ligne au National Snow and Ice Data Center (NSIDC). Le deuxième objectif spécifique est d’analyser l’effet de la variabilité spatiale intrapixel de l’état de gel du sol et de son impact sur les températures de brillance (TB) mesurées par le radiomètre de la mission Soil Moisture Active Passive (SMAP) en période de transition afin de quantifier la fraction de sol gelé. Les résultats pour le premier objectif montrent que la nouvelle base de données possède une bonne capacité à estimer l’état de gel/dégel de la surface sur l’ensemble de l’Hémisphère Nord (> 50°N). Cette recherche offre également une rare intercomparaison entre produits de gel/dégel satellitaires en comparant le produit Aquarius au Freeze/Thaw-Earth System Data Record (FT-ESDR) développé avec les données à plus hautes fréquences du capteur SSM/I. Pour le deuxième objectif, des capteurs de température distribués le long de transects de plusieurs kilomètres sur deux différents sites de taïga montrent que la variabilité spatiale du gel à l’automne peut être de 7.5 à 9.5 semaines. Il est également démontré que les mesures de SMAP sont sensibles à cette variabilité et un algorithme développé permet d’estimer le pourcentage intrapixel de sol gelé avec des coefficients de détermination (R2) entre 0.63 et 0.88 lorsque comparé aux mesures in situ. Ces résultats offrent de nouveaux outils pour mieux comprendre et quantifier les cycles de gel/dégel de l’environnement boréal et leurs impacts sur les processus biogéophysiques, hydrologiques et sur le pergélisol.Abstract: Climate change in nordic regions, which has been of growing significance over the past century has multiple impacts on the dynamic of ecosystems, notably on the surface freeze/thaw cycles, which influences carbon flux, soil biogeochemical activity, hydrology and permafrost at high latitudes. Satellite remote sensing of freeze/thaw with passive microwaves is a promising tool to offer continuous and global monitoring, but can also entail some difficulties due to intra-pixel spatial variability effects coming from the low resolution of low-frequency passive microwave sensors. The primary objective of the project is to evaluate the use of passive microwave remote sensing in L-band (1.4 GHz) for monitoring of the surface freeze/thaw in the boreal forest. A first specific objective is to evaluate a new surface freeze/thaw product estimated by the Aquarius satellite L-band radiometers. This 3.5 year-old database has been put online at the National Snow and Ice Data Center (NSIDC) website. The second specific objective is to analyse the effect of intra-pixel spatial variability of freeze/thaw and its impact on brightness temperatures (TB) measured by the Soil Moisture Active Passive (SMAP) radiometer during transition periods in order to quantify the frozen soil fraction. Results for the first objective show that the new database possesses a good capacity to estimate the surface freeze/thaw state for the entirety of the Northern Hemisphere (>50°N). This research also offers a rare intercomparison between freeze/thaw satellite products by comparing the Aquarius product to the Freeze/Thaw-Earth System Data Record (FT-ESDR) product developed with higher frequencies data of the SSM/I sensor. For the second objective, temperature sensors distributed along transects of several kilometers on two different taiga sites show that the spatial variability of autumn soil freeze onset can be between 7.5 and 9.5 weeks. It demonstrates that SMAP measurements are sensitive to this variability and a developed algorithm offers estimations of the intrapixel soil frozen fraction with coefficients of determination (R2) between 0.63 and 0.88 when compared to in situ measurements. These results offer new tools for a better understanding and quantification of freeze/thaw cycles in boreal environments and their impacts on biogeochemical and hydrologic processes and on permafrost

    An enhanced resolution brightness temperature product for future conical scanning microwave radiometers

    Get PDF
    An enhanced spatial resolution brightness temperature product is proposed for future conical scan microwave radiometers. The technique is developed for Copernicus Imaging Microwave Radiometer (CIMR) measurements that are simulated using the CIMR antenna pattern at the L-band and the measurement geometry proposed in the Phase A study led by Airbus. An inverse antenna pattern reconstruction method is proposed. Reconstructions are obtained using two CIMR configurations, namely, using measurements collected at L-band by the forward (FWD) scans only, and combining forward and backward (FWD+BWD) scans. Two spatial grids are adopted, namely, 3 km x 3 km and 36 km x 36 km. Simulation results, referred to synthetic and realistic reference brightness fields, demonstrate the soundness of the proposed scheme that provides brightness temperature fields reconstructed at a spatial resolution up to ~ 1.9 times finer than the measured field when using the FWD+BWD combination.The work of Claudio Estatico was supported in part by the Gruppo Nazionale di Calcolo Scientifico–Istituto Nazionale di Alta Matematica (GNCS-INDAM), Italy. This work has been produced for the European Space Agency (ESA) in the frame of the Copernicus Program as a partnership between ESA and the European Commission.Peer ReviewedPostprint (author's final draft

    Northern Hemisphere surface freeze–thaw product from Aquarius L-band radiometers

    Get PDF
    In the Northern Hemisphere, seasonal changes in surface freeze–thaw (FT) cycles are an important component of surface energy, hydrological and eco-biogeochemical processes that must be accurately monitored. This paper presents the weekly polar-gridded Aquarius passive L-band surface freeze–thaw product (FT-AP) distributed on the Equal-Area Scalable Earth Grid version 2.0, above the parallel 50∘&thinsp;N, with a spatial resolution of 36&thinsp;km&thinsp;×&thinsp;36&thinsp;km. The FT-AP classification algorithm is based on a seasonal threshold approach using the normalized polarization ratio, references for frozen and thawed conditions and optimized thresholds. To evaluate the uncertainties of the product, we compared it with another satellite FT product also derived from passive microwave observations but at higher frequency: the resampled 37&thinsp;GHz FT Earth Science Data Record (FT-ESDR). The assessment was carried out during the overlapping period between 2011 and 2014. Results show that 77.1&thinsp;% of their common grid cells have an agreement better than 80&thinsp;%. Their differences vary with land cover type (tundra, forest and open land) and freezing and thawing periods. The best agreement is obtained during the thawing transition and over forest areas, with differences between product mean freeze or thaw onsets of under 0.4 weeks. Over tundra, FT-AP tends to detect freeze onset 2–5 weeks earlier than FT-ESDR, likely due to FT sensitivity to the different frequencies used. Analysis with mean surface air temperature time series from six in situ meteorological stations shows that the main discrepancies between FT-AP and FT-ESDR are related to false frozen retrievals in summer for some regions with FT-AP. The Aquarius product is distributed by the U.S. National Snow and Ice Data Center (NSIDC) at https://nsidc.org/data/aq3_ft/versions/5 with the DOI https://doi.org/10.5067/OV4R18NL3BQR.</p
    • …
    corecore