291 research outputs found

    Responses of Land Surface Phenology to Wildfire Disturbances in the Western United States Forests

    Get PDF
    Land surface phenology (LSP) characterizes the seasonal dynamics in the vegetation communities observed for a satellite pixel and it has been widely associated with global climate change. However, LSP and its long-term trend can be influenced by land disturbance events, which could greatly interrupt the LSP responses to climate change. Wildfire is one of the main disturbance agents in the western United States (US) forests, but its impacts on LSP have not been investigated yet. To gain a comprehensive understanding of the LSP responses to wildfires in the western US forests, this dissertation focused on three research objectives: (1) to perform a case study of wildfire impacts on LSP and its trend by comparing the burned and a reference area, (2) to investigate the distribution of wildfire impacts on LSP and identify control factors by analyzing all the wildfires across the western US forests, and (3) to quantify the contributions of land cover composition and other environmental factors to the spatial and interannual variations of LSP in a recently burned landscape. The results reveal that wildfires play a significant role in influencing spatial and interannual variations in LSP across the western US forests. First, the case study showed that the Hayman Fire significantly advanced the start of growing season (SOS) and caused an advancing SOS trend comparing with a delaying trend in the reference area. Second, summarizing \u3e800 wildfires found that the shifts in LSP timing were divergent depending on individual wildfire events and burn severity. Moreover, wildfires showed a stronger impact on the end of growing season (EOS) than SOS. Last, LSP trends were interrupted by wildfires with the degree of impact largely dependent on the wildfire occurrence year. Third, LSP modeling showed that land cover composition, climate, and topography co-determine the LSP variations. Specifically, land cover composition and climate dominate the LSP spatial and interannual variations, respectively. Overall, this research improves the understanding of wildfire impacts on LSP and the underlying mechanism of various factors driving LSP. This research also provides a prototype that can be extended to investigate the impacts on LSP from other disturbances

    Assessing Land Degradation and Desertification Using Vegetation Index Data: Current Frameworks and Future Directions

    Get PDF
    Land degradation and desertification has been ranked as a major environmental and social issue for the coming decades. Thus, the observation and early detection of degradation is a primary objective for a number of scientific and policy organisations, with remote sensing methods being a candidate choice for the development of monitoring systems. This paper reviews the statistical and ecological frameworks of assessing land degradation and desertification using vegetation index data. The development of multi-temporal analysis as a desertification assessment technique is reviewed, with a focus on how current practice has been shaped by controversy and dispute within the literature. The statistical techniques commonly employed are examined from both a statistical as well as ecological point of view, and recommendations are made for future research directions. The scientific requirements for degradation and desertification monitoring systems identified here are: (I) the validation of methodologies in a robust and comparable manner; and (II) the detection of degradation at minor intensities and magnitudes. It is also established that the multi-temporal analysis of vegetation index data can provide a sophisticated measure of ecosystem health and variation, and that, over the last 30 years, considerable progress has been made in the respective research

    Use of satellite-derived heterogeneous surface soil moisture for numerical weather prediction, The

    Get PDF
    Summer 1996.Bibliography: pages [296]-320
    • …
    corecore