25 research outputs found

    Cooperation in Wireless Sensor Networks with Intra and Inter Cluster Interference

    Get PDF
    Virtual MIMO configuration, a common model for cooperation in sensor networks, trades off cooperation cost in front of MIMO gains. Most of proposed approaches rely mainly on the fact that cooperation at transmitter side alone seems to be much more powerful than receiver cooperation alone. The scenario that is analysed in this contribution includes the effect of interference of other clusters located closely that clearly degrades whatever cooperation type aforementioned. Under these circumstances, the use of additional sensors at receiver side helps creating a set of virtual beamformers, optimally designed to cancel the undesired signal. So, transmitter cooperation based on Dirty Paper Coding (DPC) strategies to minimize intra-cluster interference and virtual beamformers to minimize inter-cluster interference seems to be a very satisfactory combination

    A Tutorial on Nonorthogonal Multiple Access for 5G and Beyond

    Full text link
    Today's wireless networks allocate radio resources to users based on the orthogonal multiple access (OMA) principle. However, as the number of users increases, OMA based approaches may not meet the stringent emerging requirements including very high spectral efficiency, very low latency, and massive device connectivity. Nonorthogonal multiple access (NOMA) principle emerges as a solution to improve the spectral efficiency while allowing some degree of multiple access interference at receivers. In this tutorial style paper, we target providing a unified model for NOMA, including uplink and downlink transmissions, along with the extensions tomultiple inputmultiple output and cooperative communication scenarios. Through numerical examples, we compare the performances of OMA and NOMA networks. Implementation aspects and open issues are also detailed.Comment: 25 pages, 10 figure

    Deployment of clustered-based small cells in interference-limited dense scenarios: analysis, design and trade-offs

    Get PDF
    Network densification is one of the most promising solutions to address the high data rate demands in 5G and beyond (B5G) wireless networks while ensuring an overall adequate quality of service. In this scenario, most users experience significant interference levels from neigh-bouring mobile stations (MSs) and access points (APs) making the use of advanced interference management techniques mandatory. Clustered interference alignment (IA) has been widely pro-posed to manage the interference in densely deployed scenarios with a large number of users. Nonetheless, the setups considered in previous works are still far from the densification lev-els envisaged for 5G/B5G networks that are considered in this paper. Moreover, prior designs of clustered-IA systems relied on oversimplified channel models and/or enforced single-stream transmission. In this paper, we explore an ultradense deployment of small-cells (SCs) to pro-vide coverage in 5G/B5G wireless networks. A novel cluster design based on size-restricted k-means algorithm to divide the SCs into different clusters is proposed taking into account path loss and shadowing effects, thus providing a more realistic solution than those available in the current literature. Unlike previous works, this clustering method can also cater for spatial mul-tiplexing scenarios. Also, several design parameters such as the number of transmit antennas, multiplexed data streams, and deployed APs are analyzed in order to identify trade-offs between performance and complexity. The relationship between density of network elements per area unit and performance is investigated, thus allowing to illustrate that there is an optimal coverage area value over which the network resources should be distributed. Moreover, it is shown that the spectral-efficiency degradation due to the inter-cluster interference in ultra-dense networks (UDNs) points to the need of designing an interference management algorithm that accounts for both, intra-cluster and inter-cluster interference. Simulation results provide key insights for the deployment of small cells in interference-limited dense scenarios.This work has received funding from the European Union (EU) Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie ETN TeamUp5G, grant agreement No. 813391. We also acknowledge the Ministerio de Ciencia, Innovación y Universidades (MCIU), the Agencia Estatal de Investigacion (AEI) and the European Regional Development Funds (ERDF) for its support to the Spanish National Project TERESA (subprojects TEC2017-90093-C3-2-R and TEC2017-90093-C3-3-R).Publicad

    SPACE-TIME BEHAVIOR OF MILLIMETER WAVE CHANNEL AND DIRECTIONAL MEDIUM ACCESS CONTROL

    Get PDF
    An appropriate channel model is required to evaluate the performance of different physical (PHY) layer designs. However, there is no known space-time millimeter wave channel model that could benefit the use of directional antennas that is applicable in environments with lots of reflections such as residential or office. The millimeter wave signal strength is subject to temporal and spatial variations. The focus of the first part is the investigation of the characteristics of the millimeter wave propagation model. By analyzing measurement data of millimeter wave channels for indoor environments, space-time clusters are identified, and intercluster statistics for millimeter wave propagation are calculated. Correlation of the identified space-time clusters to the propagation environment is determined. In the second part, the effectiveness of the ray-tracing method in creating channel realizations in the intercluster and intracluster levels for millimeter wave indoor environments is validated. In the third part, a protocol to establish an optimal directional link between two nodes equipped with directional antennas is presented. The correctness of the protocol for different scenarios is illustrated using a ray-tracing tool. Then in the forth part, a Directional MAC (D-MAC) for supporting millimeter wave technology exploiting directional antennas is presented. The D-MAC is compatible with the current IEEE 802.15 MAC of WPAN, and it has backward compatibility to support devices which are not equipped with directional antennas. Finally, a directional neighbor discovery algorithm is presented which does not require time synchronization or any location information of communicating nodes. This means two nodes equipped with directional antennas can discover and communicate with each other through an established directional link as part of the D-MAC

    Recent Advances in Signal Processing

    Get PDF
    The signal processing task is a very critical issue in the majority of new technological inventions and challenges in a variety of applications in both science and engineering fields. Classical signal processing techniques have largely worked with mathematical models that are linear, local, stationary, and Gaussian. They have always favored closed-form tractability over real-world accuracy. These constraints were imposed by the lack of powerful computing tools. During the last few decades, signal processing theories, developments, and applications have matured rapidly and now include tools from many areas of mathematics, computer science, physics, and engineering. This book is targeted primarily toward both students and researchers who want to be exposed to a wide variety of signal processing techniques and algorithms. It includes 27 chapters that can be categorized into five different areas depending on the application at hand. These five categories are ordered to address image processing, speech processing, communication systems, time-series analysis, and educational packages respectively. The book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity

    Partial joint processing with efficient backhauling using particle swarm optimization

    Get PDF
    In cellular communication systems with frequency reuse factor of one, user terminals (UT) at the cell-edge are prone to intercell interference. Joint processing is one of the coordinated multipoint transmission techniques proposed to mitigate this interference. In the case of centralized joint processing, the channel state information fed back by the users need to be available at the central coordination node for precoding. The precoding weights (with the user data) need to be available at the corresponding base stations to serve the UTs. These increase the backhaul traffic. In this article, partial joint processing (PJP) is considered as a general framework that allows reducing the amount of required feedback. However, it is difficult to achieve a corresponding reduction on the backhaul related to the precoding weights, when a linear zero forcing beamforming technique is used. In this work, particle swarm optimization is proposed as a tool to design the precoding weights under feedback and backhaul constraints related to PJP. The precoder obtained with the objective of weighted interference minimization allows some multiuser interference in the system, and it is shown to improve the sum rate by 66% compared to a conventional zero forcing approach, for those users experiencing low signal to interference plus noise ratio

    Joint transceiver design and power optimization for wireless sensor networks in underground mines

    Get PDF
    Avec les grands développements des technologies de communication sans fil, les réseaux de capteurs sans fil (WSN) ont attiré beaucoup d’attention dans le monde entier au cours de la dernière décennie. Les réseaux de capteurs sans fil sont maintenant utilisés pour a surveillance sanitaire, la gestion des catastrophes, la défense, les télécommunications, etc. De tels réseaux sont utilisés dans de nombreuses applications industrielles et commerciales comme la surveillance des processus industriels et de l’environnement, etc. Un réseau WSN est une collection de transducteurs spécialisés connus sous le nom de noeuds de capteurs avec une liaison de communication distribuée de manière aléatoire dans tous les emplacements pour surveiller les paramètres. Chaque noeud de capteur est équipé d’un transducteur, d’un processeur de signal, d’une unité d’alimentation et d’un émetteur-récepteur. Les WSN sont maintenant largement utilisés dans l’industrie minière souterraine pour surveiller certains paramètres environnementaux, comme la quantité de gaz, d’eau, la température, l’humidité, le niveau d’oxygène, de poussière, etc. Dans le cas de la surveillance de l’environnement, un WSN peut être remplacé de manière équivalente par un réseau à relais à entrées et sorties multiples (MIMO). Les réseaux de relais multisauts ont attiré un intérêt de recherche important ces derniers temps grâce à leur capacité à augmenter la portée de la couverture. La liaison de communication réseau d’une source vers une destination est mise en oeuvre en utilisant un schéma d’amplification/transmission (AF) ou de décodage/transfert (DF). Le relais AF reçoit des informations du relais précédent et amplifie simplement le signal reçu, puis il le transmet au relais suivant. D’autre part, le relais DF décode d’abord le signal reçu, puis il le transmet au relais suivant au deuxième étage s’il peut parfaitement décoder le signal entrant. En raison de la simplicité analytique, dans cette thèse, nous considérons le schéma de relais AF et les résultats de ce travail peuvent également être développés pour le relais DF. La conception d’un émetteur/récepteur pour le relais MIMO multisauts est très difficile. Car à l’étape de relais L, il y a 2L canaux possibles. Donc, pour un réseau à grande échelle, il n’est pas économique d’envoyer un signal par tous les liens possibles. Au lieu de cela, nous pouvons trouver le meilleur chemin de la source à la destination qui donne le rapport signal sur bruit (SNR) de bout en bout le plus élevé. Nous pouvons minimiser la fonction objectif d’erreur quadratique moyenne (MSE) ou de taux d’erreur binaire (BER) en envoyant le signal utilisant le chemin sélectionné. L’ensemble de relais dans le chemin reste actif et le reste des relais s’éteint, ce qui permet d’économiser de l’énergie afin d’améliorer la durée de vie du réseau. Le meilleur chemin de transmission de signal a été étudié dans la littérature pour un relais MIMO à deux bonds mais est plus complexe pour un ...With the great developments in wireless communication technologies, Wireless Sensor Networks (WSNs) have gained attention worldwide in the past decade and are now being used in health monitoring, disaster management, defense, telecommunications, etc. Such networks are used in many industrial and consumer applications such as industrial process and environment monitoring, among others. A WSN network is a collection of specialized transducers known as sensor nodes with a communication link distributed randomly in any locations to monitor environmental parameters such as water level, and temperature. Each sensor node is equipped with a transducer, a signal processor, a power unit, and a transceiver. WSNs are now being widely used in the underground mining industry to monitor environmental parameters, including the amount of gas, water, temperature, humidity, oxygen level, dust, etc. The WSN for environment monitoring can be equivalently replaced by a multiple-input multiple-output (MIMO) relay network. Multi-hop relay networks have attracted significant research interest in recent years for their capability in increasing the coverage range. The network communication link from a source to a destination is implemented using the amplify-and-forward (AF) or decode-and-forward (DF) schemes. The AF relay receives information from the previous relay and simply amplifies the received signal and then forwards it to the next relay. On the other hand, the DF relay first decodes the received signal and then forwards it to the next relay in the second stage if it can perfectly decode the incoming signal. For analytical simplicity, in this thesis, we consider the AF relaying scheme and the results of this work can also be developed for the DF relay. The transceiver design for multi-hop MIMO relay is very challenging. This is because at the L-th relay stage, there are 2L possible channels. So, for a large scale network, it is not economical to send the signal through all possible links. Instead, we can find the best path from source-to-destination that gives the highest end-to-end signal-to-noise ratio (SNR). We can minimize the mean square error (MSE) or bit error rate (BER) objective function by sending the signal using the selected path. The set of relay in the path remains active and the rest of the relays are turned off which can save power to enhance network life-time. The best path signal transmission has been carried out in the literature for 2-hop MIMO relay and for multiple relaying it becomes very complex. In the first part of this thesis, we propose an optimal best path finding algorithm at perfect channel state information (CSI). We consider a parallel multi-hop multiple-input multiple-output (MIMO) AF relay system where a linear minimum mean-squared error (MMSE) receiver is used at the destination. We simplify the parallel network into equivalent series multi-hop MIMO relay link using best relaying, where the best relay ..

    Brain connectivity analysis: a short survey

    Get PDF
    This short survey the reviews recent literature on brain connectivity studies. It encompasses all forms of static and dynamic connectivity whether anatomical, functional, or effective. The last decade has seen an ever increasing number of studies devoted to deduce functional or effective connectivity, mostly from functional neuroimaging experiments. Resting state conditions have become a dominant experimental paradigm, and a number of resting state networks, among them the prominent default mode network, have been identified. Graphical models represent a convenient vehicle to formalize experimental findings and to closely and quantitatively characterize the various networks identified. Underlying these abstract concepts are anatomical networks, the so-called connectome, which can be investigated by functional imaging techniques as well. Future studies have to bridge the gap between anatomical neuronal connections and related functional or effective connectivities
    corecore